Methode d'Hermite

Methode d'Hermite

Méthode d'Hermite

La méthode d’Hermite, due au mathématicien Charles Hermite, permet de résoudre les équations de degré 5 en utilisant les fonctions elliptiques. La théorie de Galois montre que les équations ne sont pas résolubles par radicaux à partir du cinquième degré. Charles Hermite a pu contourner cette difficulté en utilisant une résolution qui n’était pas une résolution par radicaux et qui, par conséquent, ne venait pas contredire la théorie de Galois.


Principe de la méthode

(à compléter)


Exemples

(à compléter)


Autres méthodes de résolution d'équations


  • Portail des mathématiques Portail des mathématiques
Ce document provient de « M%C3%A9thode d%27Hermite ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Methode d'Hermite de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • Méthode d'Hermite — La méthode d’Hermite, due au mathématicien Charles Hermite, permet de résoudre les équations de degré 5 en utilisant les fonctions elliptiques. La théorie de Galois montre que les équations ne sont pas résolubles par radicaux à partir du… …   Wikipédia en Français

  • Methode de Sotta — Méthode de Sotta La méthode de Sotta, imaginée et mise au point par Bernard Sotta, permet de résoudre toutes les équations du troisième degré et peut se généraliser à certaines équations de degré supérieur ou égal à 4 si les coefficients de ces… …   Wikipédia en Français

  • Méthode De Sotta — La méthode de Sotta, imaginée et mise au point par Bernard Sotta, permet de résoudre toutes les équations du troisième degré et peut se généraliser à certaines équations de degré supérieur ou égal à 4 si les coefficients de ces équations… …   Wikipédia en Français

  • Méthode de sotta — La méthode de Sotta, imaginée et mise au point par Bernard Sotta, permet de résoudre toutes les équations du troisième degré et peut se généraliser à certaines équations de degré supérieur ou égal à 4 si les coefficients de ces équations… …   Wikipédia en Français

  • Methode de Bezout — Méthode de Bézout La méthode de Bézout, imaginée et mise au point par Étienne Bézout en 1762, est une méthode générale de résolution des équations algébriques. Cette méthode tente de ramener l équation que l on veut résoudre à d autres équations… …   Wikipédia en Français

  • Methode de Cardan — Méthode de Cardan La méthode de Cardan, proposée par Jérôme Cardan dans son ouvrage Ars Magna publié en 1545, est une méthode permettant de résoudre toutes les équations du troisième degré. Cette méthode permet de mettre en place des formules… …   Wikipédia en Français

  • Methode de Tschirnhaus — Méthode de Tschirnhaus La méthode de Tschirnhaus, imaginée et mise au point par Ehrenfried Walther von Tschirnhaus, est une tentative de résoudre le point clé de la théorie des équations à savoir trouver une méthode générale de résolution de l… …   Wikipédia en Français

  • Méthode De Bézout — La méthode de Bézout, imaginée et mise au point par Étienne Bézout en 1762, est une méthode générale de résolution des équations algébriques. Cette méthode tente de ramener l équation que l on veut résoudre à d autres équations de degré moins… …   Wikipédia en Français

  • Méthode De Cardan — La méthode de Cardan, proposée par Jérôme Cardan dans son ouvrage Ars Magna publié en 1545, est une méthode permettant de résoudre toutes les équations du troisième degré. Cette méthode permet de mettre en place des formules appelées formules de… …   Wikipédia en Français

  • Méthode De Tschirnhaus — La méthode de Tschirnhaus, imaginée et mise au point par Ehrenfried Walther von Tschirnhaus, est une tentative de résoudre le point clé de la théorie des équations à savoir trouver une méthode générale de résolution de l équation polynomiale.… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”