Markov chain Monte Carlo
- Markov chain Monte Carlo
-
Les méthodes MCMC (pour Markov chain Monte Carlo) sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner.
Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (Algorithme de Metropolis-Hastings, Échantillonnage de Gibbs (en)), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive)
Ces méthodes sont notamment appliquées dans le cadre de l'inférence bayésienne.
Voir aussi
D'autres échantillonnages de distribution
Bibliographie
(en) Christophe Andrieu, An Introduction to MCMC for Machine Learning, Kluwer Academic Publishers, 2003 [lire en ligne]
- Portail des probabilités et des statistiques
Wikimedia Foundation.
2010.
Contenu soumis à la licence CC-BY-SA. Source : Article Markov chain Monte Carlo de Wikipédia en français (auteurs)
Regardez d'autres dictionnaires:
Markov Chain Monte Carlo — Verfahren (kurz MCMC Verfahren; seltener auch Markov Ketten Monte Carlo Verfahren) sind eine Klasse von Algorithmen, die Stichproben aus Wahrscheinlichkeitsverteilungen ziehen. Dies geschieht auf der Basis der Konstruktion einer Markow Kette,… … Deutsch Wikipedia
Markov chain Monte Carlo — MCMC redirects here. For the organization, see Malaysian Communications and Multimedia Commission. Markov chain Monte Carlo (MCMC) methods (which include random walk Monte Carlo methods) are a class of algorithms for sampling from probability… … Wikipedia
Markov chain — A simple two state Markov chain. A Markov chain, named for Andrey Markov, is a mathematical system that undergoes transitions from one state to another, between a finite or countable number of possible states. It is a random process characterized … Wikipedia
Monte Carlo method — Not to be confused with Monte Carlo algorithm. Computational physics … Wikipedia
Markov chain mixing time — In probability theory, the mixing time of a Markov chain is the time until the Markov chain is close to its steady state distribution. More precisely, a fundamental result about Markov chains is that a finite state irreducible aperiodic chain has … Wikipedia
Monte Carlo molecular modeling — is the application of Monte Carlo methods to molecular problems. These problems can also be modeled by the molecular dynamics method. The difference is that this approach relies on statistical mechanics rather than molecular dynamics. Instead of… … Wikipedia
Markov model — In probability theory, a Markov model is a stochastic model that assumes the Markov property. Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. Contents 1 Introduction 2 Markov chain… … Wikipedia
Markov property — In probability theory and statistics, the term Markov property refers to the memoryless property of a stochastic process. It was named after the Russian mathematician Andrey Markov.[1] A stochastic process has the Markov property if the… … Wikipedia
Markov network — A Markov network, or Markov random field, is a model of the (full) joint probability distribution of a set mathcal{X} of random variables having the Markov property. A Markov network is similar to a Bayesian network in its representation of… … Wikipedia
Markov random field — A Markov random field, Markov network or undirected graphical model is a set of variables having a Markov property described by an undirected graph. A Markov random field is similar to a Bayesian network in its representation of dependencies. It… … Wikipedia