- Indice de Moran
-
En statistiques, l’indice de Moran' (« Moran's I » est une mesure de l'autocorrélation spatiale developpée par Patrick A.P. Moran[1]. L'auto-corrélation spatiale est caractérisée par une corrélation entre les mesures géographiquement voisines d'un phénomène mesuré.
Sommaire
Définition
L'indice I de Moran est défini par :
où N est le nombre de mesures indexées par i et j; X est la variable des mesures du phénomène auquel on s’intéresse; is la moyenne de X; et wij est un élément de la matrice des poids spatiaux.
L'espérance mathématique de l'I de Moran sous des hypothèses de non auto-corrélation spatiale est donnée par :
Sa variance est égale à
où
Les valeur négatives (positives) de l'indice indiquent une auto-corrélation spatiale négative (positive). Ses valeurs s'étendent de − 1 (indiquant une dispersion parfaite) à + 1 (corrélation parfaite). Une valeur nulle est significatif d'un modèle spatial parfaitement aléatoire. Pour le test d'hypothèse statistique, l'indice I de Moran peut être transformé en Z-scores dans lequel les valeurs plus grandes que + 1,96 ou plus petites que − 1,96 indiquent une auto-corrélation spatiale significatives avec un taux d'erreur de 5 %.
L'indice I de Moran est relié à celui de Geary, mais n'est pas identique. L'indice I de Moran est une mesure de auto-corrélation spatiale globale, tandis que l'Indice de Geary est plus sensible à l'auto-corrélation spatiale locale.
Notes et références
Notes
(en) Cet article est partiellement ou en totalité issu de l’article en anglais intitulé « Moran's I » (voir la liste des auteurs)
Références
- Moran, P.A.P. (1950), "Notes on Continuous Stochastic Phenomena," Biometrika, 37, 17–33.
Voir aussi
Bibliographie
- (en) Moran, P.A.P. (1950), "Notes on Continuous Stochastic Phenomena," Biometrika, 37, 17–23.
Articles connexes
- Analyse spatiale
- Système d'information géographique
- Glossaire du data mining
- Fouille de données spatiales
- Indice de Geary
Liens externes
(en) Esri,Spatial Autocorrelation (Morans I) (Spatial Statistics)
- Portail des probabilités et des statistiques
Catégories :- Exploration de données
- Géographie mathématique
- Technique géographique
- Analyse spatiale
Wikimedia Foundation. 2010.