Équation du quatrième degré

Équation du quatrième degré

Équation quartique

En mathématique, une équation quartique est une équation polynomiale de degré quatre.

Les équations quartiques ont été résolues dès que furent connues les méthodes de résolutions des équations du troisième degré. Ont été développées successivement la méthode de Ferrari (1522 - 1565) et la méthode de Descartes (1596 - 1650)

La méthode décrite ci-dessous est issue des propriétés des polynômes symétriques construits à partir des n racines d'un polynôme de degré n.

Sommaire

Formules

L'équation

ax^4 + bx^3+ cx^2 + dx + e = 0\, (1)

se ramène, après division par a et changement de variable y = x + \frac{b}{4a} à l'équation

y^4 + py^2 + qy + r = 0\, (2)

dont les solutions sont

y_1 = \frac 12 ( \sqrt{z_1} + \sqrt{z_2} + \sqrt{z_3})
y_2 =\frac 12 ( \sqrt{z_1} - \sqrt{z_2} - \sqrt{z_3})
y_3 = \frac 12 (-\sqrt{z_1} + \sqrt{z_2} - \sqrt{z_3})
y_4 =  \frac 12 (- \sqrt{z_1} - \sqrt{z_2} + \sqrt{z_3})

z1, z2 et z3 sont les trois racines du polynôme R résultant de degré trois.

R(z) = z^3 + 2pz^2 + (p^2 - 4r)z -q^2\,

Ces trois racines se déterminant à l'aide de la méthode de Cardan.

Par \sqrt{z_i}, il faut entendre, un des nombres dont le carré vaut z_i\,. On remarque que changer \sqrt{z_i} en son opposé transforme l'ensemble  \{y_1,\,y_2,\,y_3,\,y_4\} en  \{-y_1,-y_2, -y_3,-y_4\,\} . Il faut donc choisir les bonnes racines carrées. Ce sont celles telles que le produit \sqrt{z_1} \sqrt{z_2} \sqrt{z_3} vaut - q.

Inventaires des cas

Dans le cas où les coefficients p, q et r sont réels, on remarque que le produit des racines du polynôme R est q2, on est donc limité sur la forme des racines du polynôme R et sur les solutions de l'équation quartique.

  • Si les trois racines de R sont réelles positives, on obtient 4 valeurs réelles.
  • Si les trois racines de R sont réelles et que deux sont négatives, on obtient deux couples de complexes conjugués.
  • si R possède une racine réelle et deux racines complexes conjuguées, la racine réelle est positive et on obtient 2 valeurs réelles et deux complexes conjugués.

Principe de la méthode

Il s'agit de trouver une expression faisant intervenir les 4 racines y_1\,, y_2\,, y_3\, et y_4\,, et ne permettant d'obtenir, par permutations, que 3 valeurs distinctes.

C'est le cas par exemple de -(y_1 + y_2)(y_3 + y_4)\, qui, par permutations, ne permet de donner que les valeurs

z_1 = -(y_1 + y_2)(y_3 + y_4)\,
z_2 = -(y_1 + y_3)(y_2 + y_4)\,
z_3 = -(y_1 + y_4)(y_2 + y_3)\,

Tout polynôme symétrique en z_1\,, z_2\,, z_3\, pourra être exprimé comme polynôme symétrique de y_1\,, y_2\,, y_3\,, y_4\,.

En particulier, les coefficients du polynôme R(z) = (z - z_1)(z - z_2)(z - z_3)\, pourront s'exprimer à l'aide de p, q et r. Il est certain que la propriété

y_1 + y_2 + y_3 + y_4 = 0\, facilite les calculs.

On démontre en effet que

z_1 + z_2 + z_3 = - 2p\,
\Sigma z_iz_j = p^2-4r\,
z_1z_2z_3 = q^2\,

Les trois réels z_1\,, z_2\,, z_3\, sont alors solutions de l'équation

z^3 +2pz^2 + (p^2 - 4r)z -q^2 = 0\, (3)

Il reste maintenant à retrouver y_1\,, y_2\,, y_3\,, y_4\, en fonction de z_1\,, z_2\,, z_3\, sachant que y_1 + y_2 + y_3 + y_4 = 0\,.

On remarque alors que

z_1 = (y_1 + y_2)^2 = (y_3 + y_4)^2\,
z_2 = (y_1 + y_3)^2 = (y_2 + y_4)^2\,
z_3 = (y_1 + y_4)^2 = (y_2 + y_3)^2\,

donc que

y_1 + y_2 = \sqrt{z_1} et y_3 + y_4 = - \sqrt{z_1}\,
y_1 + y_3 = \sqrt{z_2} et y_2 + y_4 = - \sqrt{z_2}\,
y_1 + y_4 = \sqrt{z_3} et y_2 + y_3 = - \sqrt{z_3}\,

(il faut comprendre ici la notation \sqrt{z_i}\, comme une des racines carrées de z_i\,).

Les valeurs de y_i\, se retrouvent alors par simple addition.

Equations particulières

Parmi les équations de degré quatre, certaines, particulières, peuvent se résoudre uniquement à l'aide des équations quadratiques, c'est le cas des équations bicarrées et des équation symétriques.

Équations bicarrées

Elles s'écrivent sous la forme

ax^4 + bx^2 + c = 0\,

et se résolvent par changement de variable

y = x^2\, et ay^2 + by + c = 0\,

Équations quasi-symétriques

Les équations du type

x^4+a_1x^3+a_2x^2+a_3x+m^2=0\,, avec m = a_3/a_1\,, peuvent être résolues à l'aide de la méthode d'Ana Flores : en divisant l'équation par x^2\,, on obtient

x^2+a_1x+a_2+a_3/x+m^2/x^2=0\,

x^2+m^2/x^2+a_1x+a_3/x+a_2=0\,

(x^2+m^2/x^2)+a_1(x+m/x)+a_2=0\,

À l'aide du changement de variable

z=x + m/x\,

et sachant que

z^2 - 2m= x^2 + m^2/x^2\,

on obtient

(z^2-2m)+a_1z+a_2=0\,.

Cette équation admet au plus deux solutions z_1\, et z_2\,.

Les racines de l'équation initiale peuvent être obtenues en résolvant

x^2 - z_1 x+m=0\,

et

x^2 - z_2 x+m=0\,.

Si a_0\, est différent de 1 dans

a_0x^4+a_1x^3+a_2x^2+a_3x+a_0m^2=0\,

la méthode s'applique toujours. Il suffit de diviser toute l'équation par a_0\,.

L'équation quasi-symétrique a la propriété suivante : si x1, x_2\,, et x3,x_4\, sont les racines de l'équation, alors x_1x_2=m\, et x_3x_4=m\,.

Équations symétriques

Elles s'écrivent sous la forme

ax^4 + bx^3 + cx^2 + bx + a = 0\,

(il s'agit d'un cas particulier du cas précédent) et se résolvent par le changement de variable

z = x + \frac {1}{x}\,

et la résolution de

az^2 + bz + c - 2a = 0\,.

Voir aussi

Article connexe

Sources

  • Jacqueline Lelong-Ferrand, Jean-Marie Arnaudies, Cours mathématiques. Algèbre, Éditions Dunod.
  • Petite encyclopédie de mathématiques, Éditions Didier.
  • Portail des mathématiques Portail des mathématiques

Ce document provient de « %C3%89quation quartique ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Équation du quatrième degré de Wikipédia en français (auteurs)

Игры ⚽ Поможем сделать НИР

Regardez d'autres dictionnaires:

  • Equation du premier degre — Équation du premier degré Cet article fait partie de la série Mathématiques élémentaires Algèbre Logique Arithmétique Probabilités …   Wikipédia en Français

  • Équation du premier degré — Une équation du premier degré est une équation dans laquelle les puissances de l inconnue ou des inconnues sont de degré 1 et 0 uniquement comme les problèmes de proportionnalité simple. Dans les cas les plus complexes, ce peut être une équation… …   Wikipédia en Français

  • Équation du premier degré (mathématiques élémentaires) — Équation du premier degré Cet article fait partie de la série Mathématiques élémentaires Algèbre Logique Arithmétique Probabilités …   Wikipédia en Français

  • équation — [ ekwasjɔ̃ ] n. f. • 1613; h. XIIIe « égalité »; lat. æquatio 1 ♦ (1637) Math. Relation conditionnelle existant entre deux quantités et dépendant de certaines variables (ou inconnues). Poser une équation. Mettre en équation un phénomène complexe …   Encyclopédie Universelle

  • Équation bicarrée — ● Équation bicarrée équation du quatrième degré de forme générale ax4 + bx2 + c = 0, dont la résolution s obtient en effectuant le changement de variable x2 = y …   Encyclopédie Universelle

  • Équation quartique — En mathématique, une équation quartique est une équation polynomiale de degré quatre. Les équations quartiques ont été résolues dès que furent connues les méthodes de résolutions des équations du troisième degré. Ont été développées… …   Wikipédia en Français

  • Equation polynomiale — Équation polynomiale Une équation polynomiale est une équation de la forme : où les , appelés coefficients de l’équation, sont donnés. Les coefficients sont le plus souvent des nombres réels ou complexes, mais ils peuvent prendre leurs… …   Wikipédia en Français

  • Équation algébrique — Équation polynomiale Une équation polynomiale est une équation de la forme : où les , appelés coefficients de l’équation, sont donnés. Les coefficients sont le plus souvent des nombres réels ou complexes, mais ils peuvent prendre leurs… …   Wikipédia en Français

  • Équation polynômiale — Équation polynomiale Une équation polynomiale est une équation de la forme : où les , appelés coefficients de l’équation, sont donnés. Les coefficients sont le plus souvent des nombres réels ou complexes, mais ils peuvent prendre leurs… …   Wikipédia en Français

  • Equation — Équation (mathématiques)  Cet article concerne les équations mathématiques dans leur généralité. Pour une introduction au concept, voir Équation (mathématiques élémentaires).   …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”