- Triangle de kobon
-
Triangle de Kobon
Le problème des triangles de Kobon est un problème de géométrie combinatoire non-résolu qui fut énoncé pour la première fois par le mathématicien Kobon Fujimura[1]. Le problème pose la question suivante : quel est le nombre maximal de triangles distincts pouvant être construits à l'aide d'un nombre donné de segments de droite ?
Le problème fut popularisé par Martin Gardner en 1983[2].
Sommaire
Borne supérieure
Saburo Tamura a montré que, pour n segments de droite, le nombre maximal de triangles qu'il est possible de construire, noté N(n), est inférieur ou égal à ( désigne la fonction partie entière)[3].
En 2007, Johannes Bader et Gilles Clément ont affiné cette borne : N(n) est inférieur ou égal à [4] où χ est la fonction caractéristique, égale ici à 1 si n est congru à 0 ou 2 modulo 6 et 0 dans les autres cas. La limite donnée par Tamura ne peut donc pas être atteinte lorsque cette fonction caractéristique n'est pas nulle.
Solutions connues
Des solutions maximales, égales à la borne supérieure, sont connues pour 3, 4, 5, 6, 7, 8, 9, 13, 15 et 17 droites. Dans les autres cas, le nombre maximal de triangles n'est pas connu, même si connait des configurations qui se rapproche de cette borne supérieure. Pour 10 et 11 droites, la meilleure solution connue n'est que d'un triangle de moins que la borne donnée par Tamura. Pour 12, 16 et 18 droites, deux triangles de mois.
Le tableau suivant résume, pour les premières valeurs du nombre de segments, la valeur de la borne supérieure ainsi que celle de la meilleure solution connue (indiquée en gras lorsqu'il s'agit d'une solution réellement maximale).
Nombre de droites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Borne supérieure — — 1 2 5 7 11 15 21 26 33 40 47 55 65 74 85 95 107 119 133 Meilleure solution connue 0 0 1 2 5 7 11 15 21 25[5] 32[6] 38[7] 47[7] 53 65[8] 72 85[9] 93 104 115 130 Dans l'encyclopédie électronique des suites entières, la suite est classée sous le numéro A006066.
Voir aussi
Liens internes
Liens externes
- (en) Kobon Triangle, MathWorld. Consulté le 19/01/2008
- (en) Ed Pegg Jr., « Kobon Triangles », 08/02/2006, Math Games. Consulté le 19/01/2008
Références
- ↑ (en) Fujimura, Kobon, The Tokyo Puzzles, Frederick Muller Ltd (ISBN 978-0584103571)
- ↑ (en) Gardner, Martin, Wheels, Life, and Other Mathematical Amusements, W.H. Freeman & Company, 170-171 / 178 p. (ISBN 978-0716715894)
- ↑ (en) Eppstein, David, « Triangles and Simplices Kabon Triangles », The Geometry Junkyard. Consulté le 19/01/2008
- ↑ (en) Bader, Johannes, « Kobon Triangles - Proof for Tighter Lower Bound », 21/12/2007. Consulté le 19/01/2008
- ↑ (en) Grünbaum, Branko, Convex Polytopes (Graduate Texts in Mathematics), Springer (ISBN 978-0387404097)
- ↑ (ja) Honma, S., « 三角形の最大数 (nombre maximal de triangles) ». Consulté le 19/01/2008
- ↑ a et b (ru) Kabanovitch, Viatcheslav, « Тре угольника Кобона (Triangles de Kobon) », dans Шарада (Charade, publication du club de puzzle russe Диоген), vol. 6, 06/1999, p. 1-2 [texte intégral]
- ↑ (en) Suzuki, Toshitaka, « Kobon Triangle », 02/10/2005, Solution soumise au site MathWorld. Consulté le 19/01/2008
- ↑ (en) Bader, Johannes, « Kobon Triangles - Perfect Solution with 17 lines », 11/2007. Consulté le 19/01/2008
- Portail de la géométrie
Catégorie : Ligne droite
Wikimedia Foundation. 2010.