Axiome logique

Axiome logique

La méthode axiomatique permet de définir l'ensemble des lois logiques du premier ordre à partir d'axiomes logiques et de règles de déduction de telle façon que toutes les lois logiques soient ou bien un axiome ou bien une formule dérivée des axiomes avec un nombre fini d'applications des règles de déduction.

Cette présentation, purement syntaxique, est équivalente à la présentation sémantique de la théorie des modèles, qui permet de définir une loi logique comme une formule vraie dans tous les mondes possibles. Cette équivalence fait l'objet d'un théorème de complétude.

Sommaire

Les axiomes logiques des Principia Mathematica

Les lois logiques sont obtenues à l’intérieur du système de Whitehead et Russell (1910) à partir de six schémas d’axiomes et de deux règles de déduction, la règle de détachement et la règle de généralisation.

Les schémas d’axiomes

Ces schémas d’axiomes sont les suivants. p, q, et r peuvent être remplacées par des formules quelconques (avec ou sans variables libres) du calcul des prédicats au premier ordre.

  • si (p ou p) alors p
  • si p alors (p ou q)
  • si (p ou q) alors (q ou p)
  • si (si p alors q) alors (si (p ou r) alors (q ou r))
  • si (tout x est tel que p) alors p’

où p’ est obtenu à partir de p en substituant une variable y, non liée dans p, à toutes les occurrences libres de x dans p.

  • si (tout x est tel que (p ou q)) alors (p ou tout x est tel que q)

où p est une formule qui ne contient pas x comme variable libre

Les deux règles de déduction

La règle de détachement ou modus ponens dit que des deux prémisses p et (si p alors q) on peut déduire q.

La règle de généralisation dit que de l’unique prémisse p on peut déduire (tout x est tel que p)

Equivalence avec la déduction naturelle

On peut prouver que toutes les vérités anhypothétiques, au sens de la déduction naturelle, sont ou bien des axiomes obtenus à partir de ces schémas, ou bien des conséquences que l’on peut déduire en un nombre fini d’étapes à partir de ces axiomes avec les deux règles de déduction.

Toutes les preuves que l’on peut formaliser dans la déduction naturelle peuvent être formalisées dans le calcul logique (au premier ordre) de Whitehead et Russell et inversement.

Complétude du système

Gödel a prouvé un théorème de complétude qui affirme que ces six schémas d'axiomes et ces deux règles de déduction suffisent pour obtenir toutes les lois logiques.


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Axiome logique de Wikipédia en français (auteurs)

Игры ⚽ Поможем сделать НИР

Regardez d'autres dictionnaires:

  • Axiome Logique — La méthode axiomatique permet de définir l ensemble des lois logiques du premier ordre à partir d axiomes logiques et de règles de déduction de telle façon que toutes les lois logiques soient ou bien un axiome ou bien une formule dérivée des… …   Wikipédia en Français

  • Axiome logique — ● Axiome logique axiome du calcul propositionnel ou du calcul des prédicats avec égalité, par opposition aux axiomes spécifiques d une théorie mathématique particulière, dits axiomes non logiques ou axiomes propres de cette théorie …   Encyclopédie Universelle

  • logique — 1. logique [ lɔʒik ] n. f. • XIIIe; lat. logica, gr. logikê, de logos « raison » I ♦ 1 ♦ Science ayant pour objet l étude, surtout formelle, des normes de la vérité; « analyse formelle de la connaissance » (Piaget). Logique formelle, logique pure …   Encyclopédie Universelle

  • LOGIQUE MATHÉMATIQUE — La logique au sens étroit du terme, c’est à dire la logique formelle par opposition à l’épistémologie ou à la théorie de la connaissance, se propose de donner une théorie de l’inférence formellement valide. Elle considère comme valide toute… …   Encyclopédie Universelle

  • Logique epistemique — Logique épistémique La logique épistémique est la logique de la connaissance d agents pris individuellement. Son nom vient du verbe grec epistémei qui signifie savoir, qui a aussi produit le mot épistémologie. Ses créateurs sont E. J. Lemmon and… …   Wikipédia en Français

  • Logique Épistémique — La logique épistémique est la logique de la connaissance d agents pris individuellement. Son nom vient du verbe grec epistémei qui signifie savoir, qui a aussi produit le mot épistémologie. Ses créateurs sont E. J. Lemmon and Jaakko Hintikka.… …   Wikipédia en Français

  • Axiome (Mathématiques Élémentaires) — Axiome Un axiome (du grec ancien αξιωμα/axioma, « considéré comme digne, convenable, évident en soi ») désigne une vérité indémontrable qui doit être admise. Pour certains philosophes grecs de l Antiquité, un axiome était une… …   Wikipédia en Français

  • Axiome (mathematiques elementaires) — Axiome Un axiome (du grec ancien αξιωμα/axioma, « considéré comme digne, convenable, évident en soi ») désigne une vérité indémontrable qui doit être admise. Pour certains philosophes grecs de l Antiquité, un axiome était une… …   Wikipédia en Français

  • Axiome (mathématiques élémentaires) — Axiome Un axiome (du grec ancien αξιωμα/axioma, « considéré comme digne, convenable, évident en soi ») désigne une vérité indémontrable qui doit être admise. Pour certains philosophes grecs de l Antiquité, un axiome était une… …   Wikipédia en Français

  • LOGIQUE (HISTOIRE DE LA) — Ce n’est qu’à une époque relativement récente qu’on a vraiment commencé à s’intéresser à l’histoire de la logique. Jusqu’au milieu du XIXe siècle régnait en effet l’idée que la logique n’avait pas d’histoire, étant, pour l’essentiel, sortie… …   Encyclopédie Universelle

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”