- Temps propre
-
En théorie relativiste, on appelle temps propre d'une particule le temps mesuré dans le repère de cette particule, c'est-à-dire dans le repère où elle est immobile.
En relativité restreinte, l'intervalle de temps propre séparant deux événements est l'intervalle de temps les séparant dans un référentiel inertiel où ils ont lieu au même endroit de l'espace[1].
Sommaire
Définition et propriétés
En mécanique newtonienne on décrit le mouvement d'un corps dans un espace absolu par rapport à un temps absolu. Dans ce cadre la position d'un mobile, mesurée par ses coordonnées spatiales (x, y, z) dans un certain repère, est donnée en fonction du temps t. La théorie de la relativité déclare qu'il n'existe pas de temps absolu et que ce temps ne peut pas être séparé de l'espace. Elle raisonne sur des événements, chaque événement étant caractérisé par un lieu M et un instant t. Quand on suit des événements attachés à un corps libre en mouvement, on parle de ligne d'univers.
Considérons un vaisseau spatial se déplaçant librement dans l'espace, c'est-à-dire en ayant coupé tous ses moteurs (c'est donc un référentiel inertiel). Imaginons qu'il émette des éclairs à intervalles réguliers en accord avec une horloge située dans l'habitacle (cette horloge donne ce que l'on appelle le temps propre de la fusée). Appelons Δτ cet intervalle temporel local entre deux éclairs successifs ainsi mesuré. Puis considérons un autre référentiel inertiel depuis lequel d'autres observateurs voient passer devant eux la fusée à vitesse constante. Ces observateurs auront synchronisé leurs horloges et observeront les éclairs émis par la fusée quand elle passe devant eux en notant l'heure. Dans ce deuxième référentiel inertiel l'intervalle entre deux éclairs (deux événements) est caractérisé par deux nombres : la distance spatiale Δl observée entre les deux endroits où avaient lieu les éclairs et la distance temporelle Δt entre eux.
Une conséquence des axiomes d'Einstein, utilisable d'ailleurs comme principe pour fonder la relativité restreinte, est que l'on a l'égalité
et bien sûr le carré c2Δτ2 est indépendant du référentiel d'observation choisi du fait qu'il ne dépend que de ce qui se passe dans la fusée[2]. Autrement dit, tous les observateurs s'accordent sur la valeur de Δτ2 ainsi calculée, bien que les valeurs de Δl et de Δt différent d'un système de repérage à l'autre. Donc dans différents référentiels inertiels numérotés 1, 2, ..., on a :
Puisque
le laps de temps observé Δt entre les deux éclairs mesuré dans un référentiel extérieur est toujours plus grand que la durée propre Δτ. Ainsi le temps écoulé entre deux événements donnés se produisant dans la fusée est toujours plus petit que celui mesuré à l'extérieur par les horloges du dehors de l'autre référentiel coïncidant avec les éclairs au moment où ils sont émis. Ce phénomène de ralentissement des horloges est illustré par le célèbre paradoxe des jumeaux.
Principe de maximisation de l'intervalle de temps propre
En se basant sur les propriétés de l'intervalle de temps propre John Wheeler et Edwin Taylor ont présenté une méthode[3], inspirée du principe de moindre action, qui permet de retrouver la plupart des résultats de la relativité générale sans faire appel au formalisme tensoriel et en utilisant uniquement l'algèbre élémentaire. Cette méthode permet par exemple de retrouver simplement les résultats d'Einstein sur la déviation des rayons lumineux au voisinage du Soleil et l'avance du périhélie de Mercure[4].
La méthode de Wheeler et Taylor est basée sur le principe suivant :
- un mobile se déplaçant librement dans l'espace suit la trajectoire rendant maximale l'intervalle de temps propre.
Cette trajectoire est appelée géodésique de l'espace-temps considéré.
Pour se rappeler si le temps propre du mobile libre est maximal ou minimal on peut utiliser le moyen mnémotechnique du voyageur de Langevin. Dans cette expérience des jumeaux on sait que c'est le frère voyageur qui vieillit moins et le sédentaire qui vieillit plus. Donc l'intervalle de temps mesuré par le frère resté sur Terre est plus grand que l'intervalle mesuré par le frère monté dans la fusée. Or dans cette expérience, c'est bien la Terre qui représente le mobile libre car elle n'est soumise à aucune accélération, à aucun changement de direction. La fusée au contraire ne flotte pas librement dans l'espace (au moins pendant une partie de son trajet) puisqu'elle effectue notamment un demi-tour, ce qui ne peut pas être accompli sans allumer un moteur. Donc c'est bien le mobile libre qui mesure un temps propre maximal.
Dans la représentation sur un diagramme d'espace-temps du paradoxe des jumeaux, la ligne droite représente la ligne d'univers de la Terre, donc en fait la géodésique entre les deux événements départ et retour de la fusée, et c'est le long de cette ligne que le temps propre mesuré est le plus long. Réciproquement le fait que le voyageur en fusée ait mesuré un temps propre plus court que son frère prouve que lui n'a pas suivi une géodésique de l'espace-temps.
La géodésique entre deux événements est le trajet qui maximise le temps propre.
Article détaillé : principe de moindre action.Formulation tensorielle
Le tenseur de métrique permet de calculer la distance élémentaire entre deux événements voisins E1 et E2. Dans un repère donné le vecteur joignant E1 à E2 a pour coordonnées
où μ est un indice à quatre valeurs 0, 1, 2, 3.
Dans un repère lorentzien le carré du temps propre est donnée par l'expression
et en identifiant avec la formule
on trouve immédiatement que le tenseur représente la métrique de Minkowski
En changeant tous les signes il est courant aussi d'utiliser le carré de la distance spatiale dσ2 entre les deux événements, plutôt que le carré de la distance temporelle c2dτ2. La première quantité est donc donnée par
Dans le premier cas (carré d'un intervalle temporel) on parle de la signature
et dans le second (carré d'un intervalle spatial), de la signature
Article détaillé : Intervalle d'espace-temps.Fusion des unités de temps et d'espace
La relativité restreinte a opéré l'unification de l'espace et du temps en une seule structure à quatre dimensions : l'espace-temps. Il est donc normal de mesurer les temps et les longueurs avec la même unité. D'ailleurs, les unités de longueur et de temps ne sont plus des grandeurs indépendantes puisque le facteur de conversion entre les deux, c.-à-d. la vitesse de la lumière a été fixée à la valeur arbitraire de 299 792 458 m/s. En astronomie on a coutume de mesurer les distances en unités de lumière. Dire que telle étoile est située à dix années de lumière revient à dire que la lumière met dix années pour parvenir jusqu'à nous[5]. Une seconde de lumière est la distance parcourue par la lumière en une seconde, soit 299 792 458 m. Une année faisant 365,25 jours, soit 3,2×107 secondes, une année de lumière vaut 9,5×1015 mètres.
Les formules de conversion entre grandeurs exprimées en mètres et grandeurs exprimées en secondes sont :
- r (en mètres) = r (en secondes)×c
- r (en secondes) = r (en mètres)/c .
Les formules donnant la métrique de l'espace-temps prennent une forme plus simple dès que l'on mesure longueurs et temps soit en secondes soit en mètres puisque cela revient à prendre la vitesse c de la lumière égale à 1. En unités unifiées l'expression du carré du temps propre devient :
et on ne « traîne » plus de facteurs c dans les formules. On comprend pourquoi les spécialistes de relativité préfèrent mener leurs calculs avec une vitesse de la lumière égale à l'unité.
Notes
- Les référentiels inertiels qui vérifient cette contrainte ne diffèrent que par des orientations et unités sur les axes, et autres détails, et dans tous la mesure du temps séparant les deux événements sera la même.
- et du fait que la vitesse de la lumière est la même dans tous les référentiels inertiels
- (en) Edwin F. Taylor & John A. Wheeler : Exploring black holes : introduction to general relativity, Addison Wesley Longman (2000).
- Déviation d'un rayon lumineux au voisinage du Soleil et Précession de l'orbite de Mercure en relativité générale. Voir aussi (en) Complete calculations of the perihelion precession of Mercury and the deflection of light by the Sun in General Relativity. Voir
- Cette façon de parler n'est pas étonnante : dans la vie courante on dira que Montpellier est à 3 heures de Paris par le train, mesurant donc bien une distance en temps.
Voir aussi
Wikimedia Foundation. 2010.