- Surface de Bezier
-
Surface de Bézier
Les surfaces de Bézier sont une méthode de définition d'une surface grâce aux courbes de Bézier, avantageuses pour définir une courbe par la donnée de points de contrôle.
Sommaire
Définition
Étant donnée une matrice [M] de points de l'espace Ai,j, la surface de Bézier correspondante est l'ensemble des points M généré par les valeurs comprises entre 0 et 1 des variables u et v du polynôme :
Propriétés
Les points ainsi définis sont évidemment indépendants du choix du point O.
Le cas particulier n = 1 (ou m=1) correspond aux surfaces réglées. Si m = n = 1, on obtient une surface deux fois réglée, qui est soit un plan si les quatre points sont coplanaires, soit un paraboloïde hyperbolique. En considérant sur une telle surface les intersections de deux paires de règles voisines, on se rend compte que la donnée de quatre points ne fait pas que définir la nature de la surface, mais sert aussi à en arrêter les frontières. Dans le cas général, les courbes de Bézier correspondant aux sous-ensembles de points A0,j, An,j, Ai,0, et Ai,m définissent les frontières de la surface.Voir aussi
Articles connexes
Références
- (fr) 'Systemes De Cfao', 'Etudes En Cfao Cao Mecanique ','Elements De Cao Volume 1 Materiels Et Logiciels De Base', 'Cao Mécanique', 'Systèmes De C.F.A.O. : Conception Et Fabrication Assistées Par Ordinateur : - Introduction Dans L'entreprise, Méthode De Réalisation ', 'La Cfao - Introduction, Techniques Et Mises En Oeuvre, 3ème Édition Revue Et Corrigée ', 'La Cfao ', de Yvon Gardan, Livres, édition Hermes, (modèles CSG, B-REP, modeleur paramétrique ou variationnel ect...)
- Portail de la géométrie
Catégorie : Surface
Wikimedia Foundation. 2010.