- Sat4j
-
Problème SAT
On nomme problème SAT un problème de décision visant à savoir s'il existe une solution à une série d'équations logiques données. En termes plus précis : une valuation sur un ensemble de variables propositionnelles[1] telle qu'une formule propositionnelle donnée soit alors logiquement vraie. Ce problème est très important en théorie de la complexité et a de nombreuses applications en planification classique, model checking, diagnostic, et jusqu'au configurateur d'un simple PC ou de son système d'exploitation.
Sommaire
Définitions
Clause et forme clausale
Une clause est une proposition de la forme où les vi sont des littéraux (positifs ou négatifs). Une clause d'ordre n est donc une disjonction d'au plus n littéraux. Une formule du calcul propositionnel est en forme normale conjonctive (ou forme clausale) d'ordre n si elle est une conjonction de clauses d'ordre n.
Le problème SAT
Soit une formule logique sous forme normale conjonctive (CNF). Cette CNF est satisfaisable[2] s'il est possible d'associer une valeur logique booléenne à chacune de ses variables de telle manière que cette formule soit logiquement vraie. Déterminer si une formule sous CNF d'ordre n est satisfaisable est appelé problème de satisfaisabilité ou problème SAT d'ordre n (n-SAT). Si la formule propositionnelle n'est pas sous CNF, il est nécessaire de la normaliser[3] pour que le problème soit qualifié de SAT. Généralement, la réponse à cette question fournit également un exemple d'assignation des variables tel que la CNF soit logiquement vrai.
- Exemple
- Soit l'ensemble de variables et .
- est satisfaisable puisque, si on pose , alors est logiquement vrai.
- En revanche, n'est pas satisfaisable !
Complexité et restrictions
NP-complétude
Le problème SAT est un problème NP–complet d'après le théorème de Cook. Donc de la même manière, le problème 3–SAT est lui aussi NP–complet. Pour le démontrer, il suffit de prouver que le problème SAT est polynomialement réductible à 3–SAT.
- Preuve
- On remarque que toute clause peut se mettre sous la forme :
- Donc le problème SAT est polynomialement réductible à 3–SAT. On conclut que 3–SAT est NP–complet.
Tous les problèmes n–SAT avec n supérieur ou égal à 3 sont des problèmes NP–complets.
- Exemple
- Soient des variables propositionnelles.
- Déterminer si l'expression est satisfaisable est un problème 3–SAT.
- Tout algorithme capable de résoudre un problème 3–SAT (même le « meilleur ») peut dans certains cas devoir essayer un nombre de combinaisons d'assignations exponentiel en la valeur n.
Le problème 2-SAT
2-SAT, d'après la définition, cherche à déterminer la satisfaisabilité d'une formule F du calcul propositionnel en forme normale conjonctive d'ordre 2. Ce problème n'est pas NP-complet mais de classe . Il existe plusieurs algorithmes polynomiaux pour résoudre le problème 2-SAT.
- Exemple
- Intéressons nous plus particulièrement à celui présenté par Aspvall, Plass et Tarjan en 1979[4].
- Une clause d'ordre deux est équivalente aux implications . Pour résoudre 2-SAT on construit le graphe orienté G = (S,A) dual (appelé graphe 2-SAT) selon les règles suivantes. Les sommets S correspondent aux différentes variables propositionnelles (ou leurs négations) de la formule considérée. On associe ensuite à chaque clause les deux arcs et pour former l'ensemble A.
- F est satisfaisable si et seulement si pour chaque variable propositionnelle de F, les sommets et du graphe 2-SAT sont dans deux composantes fortement connexes distinctes. L'algorithme de Tarjan permet de calculer les composantes fortement connexes d'un graphe orienté en , donc 2-SAT est bien de classe .
Un autre résultat intéressant, obtenu par Papadimitriou en 1994, concerne la complexité en termes d'espace du problème 2-SAT. Celui-ci est complet pour la classe de complexité NL.
Algorithmes de SAT
La plus évidente des méthodes pour résoudre un problème SAT est de parcourir la table de vérité du problème, mais la complexité est alors exponentielle par rapport au nombre de variables.
Méthode systématique
Pour prouver la satisfaisabilité du CNF , il suffit de choisir une variable et de prouver récursivement la satisfaisabilité de ou . La procédure est plus facile récursivement puisque avec ou peut souvent se simplifier. L'appel récursif construit ainsi un arbre binaire de recherche.
Généralement, il existe à chaque nœud des clauses unitaires (la CNF est de la forme ), qui permettent de réduire fortement l'espace de recherche.
- Exemple
- Considérons la CNF :
- .
- La deuxième clause () est unitaire et permet d'obtenir immédiatement v3 = faux. On peut remplacer les valeurs de v3 dans ce CNF. Cela donne :
- .
- À nouveau, on a une clause unitaire, et on obtient . Puis, par propagation, on obtient .
Dans cet exemple, on a trouvé les valeurs des trois variables sans même développer l'arbre de recherche. De manière générale, on peut réduire fortement l'espace de recherche. D'autre part, si une variable apparaît toujours positivement dans la CNF , alors on peut poser puisque est satisfaisable si et seulement si est satisfaisable (et de même si la variable apparaît négativement). Ainsi, dans l'exemple précédent, n'apparaît que négativement et l'assignation peut être effectuée. Remarquons que cette affectation permet d'accélérer la découverte d'une solution mais que des solutions pourraient exister en effectuant l'assignation contraire. L'algorithme DPLL (Davis, Putnam[5], Davis, Logemann, Loveland[6]) se base sur ces idées.
Le choix de la variable à développer est très important pour les performances des algorithmes SAT. On choisit généralement les variables qui apparaissent le plus souvent, si possible dans des clauses de taille 2.
Apprentissage de clauses
Le principe de l'apprentissage de clauses est le suivant : lorsqu'un conflit apparaît lors de la recherche, c'est-à-dire lorsque une assignation partielle est démontrée non cohérente avec l'ensemble des clauses, on peut isoler un sous-ensemble de ces assignations et un sous-ensemble de ces clauses, qui sont responsables du conflit (les assignations ne sont pas cohérentes avec les clauses). À partir de ces assignations, il est possible de construire (d'apprendre) une clause qui est impliquée par les clauses. Cette nouvelle clause est ajoutée au CNF. Les assignations pertinentes sont déterminées par un graphe de dépendance entre les clauses et les assignations. Les clauses apprises permettent de ne pas refaire plusieurs fois les mêmes erreurs dans l'arbre de recherche.
- Exemple
- Considérons que l'assignation {v1 = vrai,v2 = faux,v3 = faux,v4 = vrai,v5 = faux} mène à un conflit. S'il est démontré que les variables {v1,v4,v5} sont responsables de ce conflit, alors la clause est impliquée et il est possible de l'ajouter dans la liste des clauses. Si par la suite, la recherche conduit à l'assignation {v1 = vrai,v2 = vrai,v5 = faux,v12 = faux}, la variable v4 peut être immédiatement assignée à faux grâce à la clause apprise.
Approches prospectives
L'approche prospective consiste à prospecter l'arbre de recherche pour découvrir des assignations certaines. Ainsi, étant donné un CNF , étant donnée une variable non instanciée , on prospecte les CNFs et . Si les deux CNFs conduisent à l'instanciation de la même variable avec la même valeur, alors l'instanciation peut se faire dès la CNF .
- Exemple
- Considérons la CNF . Nous nous intéressons ici à la variable et prospectons la variable .
- Considérons l'assignation . On obtient et donc l'assignation (puisque cette variable apparaît uniquement positivement).
- Considérons l'assignation . On obtient et donc l'assignation par clause unitaire.
- Dans tous les cas, on obtient et il est donc possible d'effectuer cette assignation dès la CNF .
Rappelons que la complexité du problème SAT vient de la taille exponentielle de l'arbre de recherche par rapport au nombre de variables. La prospection permet de réduire fortement ce nombre de variables dès la racine (ou à n'importe quel nœud de l'arbre) avec une complexité supplémentaire relativement faible eu égard à la diminution de l'arbre de recherche.
Recherche locale
Partant d'une assignation de toutes les variables, on cherche à modifier certaines valuations de façon à réduire le nombre de clauses non satisfaites. Cet algorithme souffre de plusieurs défauts : il peut tomber dans des minima locaux et il est incapable de prouver la non satisfaisabilité, mais il s'avère très efficace dans les problèmes non structurés (c'est-à-dire souvent les problèmes générés aléatoirement). En cas d'échec après un temps long, il est possible de choisir une nouvelle assignation aléatoire pour éviter les minima locaux.
Principales implémentations
- zChaff (Moskewicz, Madigan, Zhao, Zhang 2001)
- Siege (Ryan 2003)
- MiniSAT (Eén et Sörensson)
Applications
Il est possible de traduire certains problèmes d'intelligence artificielle et d'utiliser les algorithmes SAT pour résoudre efficacement ces problèmes.
Diagnostic
Le diagnostic de systèmes statiques consiste à déterminer si un système a un comportement défectueux étant donnée l'observation des entrées et sorties du système. Le modèle du système peut être traduit en un ensemble de contraintes (disjonctions) : pour chaque composant c du système, une variable Ab(c) est créée qui est évaluée à vraie si le composant a un comportement anormal (Abnormal). Les observations peuvent être également traduites par un ensemble de disjonctions. L'assignation trouvée par l'algorithme de satisfaisabilité est un diagnostic.
Planification classique
Le problème de planification classique consiste à trouver une séquence d'actions menant d'un état du système à un ensemble d'états. Étant donnée une longueur maximale du plan n et un ensemble V de variables d'état booléennes permettant de décrire l'état du système, on crée les variables propositionelles vi pour tout et toute variable . La variable vi est vraie si la variable d'état est vraie après l'action numéro i. On crée également les variables ai pour tout et toute action a. La variable ai est vraie si l'action numéro i est a. Il est alors possible de transformer le modèle du système en un ensemble de clauses. Par exemple, si l'action a fait passer la variable v1 à vrai lorsque celle-ci est fausse, alors la CNF contiendra une clause (ce qui est traduit par la clause ). L'assignation trouvée par l'algorithme de satisfaisabilité peut être immédiatement traduite en plan.
La planification classique par SAT est très efficace si on connaît la longueur n du plan. Si cette valeur n'est pas connue, on peut chercher des plans pour une valeur incrémentale, ce qui est parfois coûteux (notamment parce que la CNF est non satisfaisable jusqu'à n − 1).
Model checking
Une approche semblable a été utilisée pour le model checking (vérification de propriétés d'un modèle). La principale différence est que le model checking s'applique à des trajectoires de longueur infinie contrairement à la planification. Cependant, si l'espace d'états du système est fini, toute trajectoire infinie boucle à un certain point et on peut borner la taille des trajectoires qu'il est nécessaire de vérifier. Le bounded model checking tire parti de cette propriété pour transformer le problème de model checking en un certain nombre de problèmes de satisfaisabilité.
Voir aussi
Bibliographie
- R. Cori et D. Lascar, Logique mathématique, Dunod, 2003, ISBN 2-10-005452-X
- J.-M. Alliot, T. Schiex, P.Brisset et F. Garcia, Intelligence artificielle & informatique théorique, Cépaduès, 2002, ISBN 2-85428-578-6
- L. Sais, Problème SAT : Progrès et Défis, 2008
Notes
- ↑ Une valuation sur P est une application de P dans l'ensemble {0,1}, avec P inclus dans l'ensemble des variables propositionnelles.
- ↑ http://www.cnrtl.fr/lexicographie/satisfaisable?
- ↑ Cela ne modifie pas la nature du problème, notamment par restriction. En effet, « toute formule du calcul propositionnel est logiquement équivalente à au moins une formule sous forme normale conjonctive et à au moins une formule sous forme normale disjonctive ».
- ↑ (en) Bengt Aspvall, Michael F. Plass, et Robert E. Tarjan, « A linear-time algorithm for testing the truth of certain quantified boolean formulas », dans Information Processing Letters, 8, p. 121-123 (1979), [lire en ligne]
- ↑ (en) Martin Davis et Hillary Putnam, « A Computing Procedure for Quantification Theory » , dans Communications of the ACM, 7, p. 201-215 (1960) [lire en ligne]
- ↑ (en) Martin Davis, George Logemann et Donald Loveland, « A machine Program for Theorem Proving », dans Communications of the ACM, 5, p. 394-397 (1962), [lire en ligne]
Catégories : Algorithmique | Intelligence artificielle | Problème NP-complet
Wikimedia Foundation. 2010.