Quantification existentielle

Quantification existentielle

Quantificateur (logique)

Page d'aide sur l'homonymie Pour les articles homonymes, voir Quantificateur.


Les expressions « pour tout » et « il existe » utilisées pour formuler des propositions mathématiques dans le calcul des prédicats sont appelées des quantifications et le symbole qui les représente en langage formel est appelé un quantificateur.

Quantification universelle

La quantification universelle est représentée en notations mathématiques par un A à l'envers (∀) ; elle exprime "pour tout" ou "quel que soit".

Par exemple, l'assertion, exprimée en langue naturelle,

pour tout x, x satisfait la propriété P

s'énonce formellement :

∀x P(x)

La notation ∀ vient de l'allemand Alle (qui signifie « tous » en français).

Quantification existentielle

La quantification existentielle est représentée par un E retourné (∃) ; elle exprime « il existe un ». Cette notation peut être suivie d'un ! Ce qui indique l'unicité de l'élément qui suit, la signification devient alors « il existe un unique ». Par exemple, l'assertion, exprimée en langue naturelle,

il existe un x qui satisfait la propriété P

s'énonce formellement :

∃x, P(x)

tandis que

il existe un unique n, (suivi d'un prédicat)

s'énonce formellement :

∃! n, suivi du prédicat

La notation ∃ vient de l'allemand Existieren.

Voir aussi

Ce document provient de « Quantificateur (logique) ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Quantification existentielle de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • QUANTIFICATION (logique) — QUANTIFICATION, logique Notion usitée en logique des prédicats. On peut, avec W. V. O. Quine, diviser en trois la logique contemporaine: 1. La théorie des fonctions de vérité a pour objet les structures logiques engendrées en construisant des… …   Encyclopédie Universelle

  • Quantification — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sur les autres projets Wikimedia : « quantification », sur le Wiktionnaire (dictionnaire universel) En sciences, la quantification consiste …   Wikipédia en Français

  • RÉCURSIVITÉ — Les (semi ) fonctions récursives ont été introduites pour donner un équivalent mathématique à la notion métamathématique intuitive de (semi ) fonction effectivement ou mécaniquement calculable (cf. LOGIQUE MATHÉMATIQUE, chap. 4). Par souci de… …   Encyclopédie Universelle

  • Theorie des ensembles de von Neumann-Bernays-Godel — Théorie des ensembles de von Neumann–Bernays–Gödel La théorie des ensembles de von Neumann–Bernays–Gödel, abrégée en NBG ou théorie des classes, est une théorie axiomatique essentiellement équivalente[1] à la théorie ZFC de Zermelo–Fraenkel avec… …   Wikipédia en Français

  • Theorie des ensembles de von Neumann–Bernays–Godel — Théorie des ensembles de von Neumann–Bernays–Gödel La théorie des ensembles de von Neumann–Bernays–Gödel, abrégée en NBG ou théorie des classes, est une théorie axiomatique essentiellement équivalente[1] à la théorie ZFC de Zermelo–Fraenkel avec… …   Wikipédia en Français

  • Théorie NBG — Théorie des ensembles de von Neumann–Bernays–Gödel La théorie des ensembles de von Neumann–Bernays–Gödel, abrégée en NBG ou théorie des classes, est une théorie axiomatique essentiellement équivalente[1] à la théorie ZFC de Zermelo–Fraenkel avec… …   Wikipédia en Français

  • Théorie des classes — Théorie des ensembles de von Neumann–Bernays–Gödel La théorie des ensembles de von Neumann–Bernays–Gödel, abrégée en NBG ou théorie des classes, est une théorie axiomatique essentiellement équivalente[1] à la théorie ZFC de Zermelo–Fraenkel avec… …   Wikipédia en Français

  • Théorie des ensembles de Von Neumann–Bernays–Gödel — La théorie des ensembles de von Neumann–Bernays–Gödel, abrégée en NBG ou théorie des classes, est une théorie axiomatique essentiellement équivalente[1] à la théorie ZFC de Zermelo–Fraenkel avec axiome du choix (et avec les mêmes variantes… …   Wikipédia en Français

  • Théorie des ensembles de von Neumann-Bernays-Gödel — Théorie des ensembles de von Neumann–Bernays–Gödel La théorie des ensembles de von Neumann–Bernays–Gödel, abrégée en NBG ou théorie des classes, est une théorie axiomatique essentiellement équivalente[1] à la théorie ZFC de Zermelo–Fraenkel avec… …   Wikipédia en Français

  • Théorie des ensembles de von Neumann–Bernays–Gödel — La théorie des ensembles de von Neumann–Bernays–Gödel, abrégée en NBG ou théorie des classes, est une théorie axiomatique essentiellement équivalente[1] à la théorie ZFC de Zermelo–Fraenkel avec axiome du choix (et avec les mêmes variantes… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”