Potentiel de Yukawa

Potentiel de Yukawa

Un potentiel de Yukawa (appelé également 'potentiel de Coulomb écranté') est un potentiel de la forme

V(r)= -g^2 \;\frac{e^{-mr}}{r}

Hideki Yukawa montra dans les années 1930 qu'un tel potentiel provient de l'échange d'un champ scalaire massif tel que celui d'un pion de masse m. La particule médiatrice du champ possédant une masse, la force correspondante a une portée inversement proportionnelle à sa masse. Pour une masse nulle, le potentiel de Yukawa devient équivalent à un potentiel coulombien, et sa portée est considérée comme infinie.

Dans l'équation ci-dessus, le potentiel est négatif, ce qui indique que la force est attractive. La constante g est un nombre réel; elle est égale à la constante de couplage entre le champ mésonique et le champ fermionique avec lequel il interagit. Dans le cas de la physique nucléaire, les fermions seraient le proton et le neutron.

Sommaire

Obtention du potentiel de Yukawa

Partons de l’équation de Klein-Gordon[1]:

 \frac{\partial^2\Psi}{\partial x^2}+\frac{\partial^2\Psi}{\partial y^2}+\frac{\partial^2\Psi}{\partial z^2}+\frac{\partial^2\Psi}{\partial (ict)^2}  = \left(\frac{2\pi m_0 c}{h}\right)^2\Psi

Si le second membre est nul, on obtient l'équation des ondes électromagnétiques :

 \frac{\partial^2\Psi}{\partial x^2}+\frac{\partial^2\Psi}{\partial y^2}+\frac{\partial^2\Psi}{\partial z^2}+\frac{\partial^2\Psi}{\partial (ict)^2}  = 0


Si, en plus, la fonction d'onde est indépendante du temps, on obtient l'équation du champ électrostatique, c'est-à-dire l'équation de Laplace :

ΔΨ = 0

Enfin, en symétrie sphérique fonction de la distance r à la charge ponctuelle, on obtient l'équation de Laplace du champ coulombien :

 \frac{1}{r^2}\frac{\mathrm d}{\mathrm dr}\left(r^2\frac{\mathrm d\Psi}{\mathrm dr}\right)=0

Le potentiel de Yukawa a la symétrie sphérique et est statique mais garde le second membre. L'équation de Klein-Gordon devient :

 \frac{1}{r^2}\frac{\mathrm d}{\mathrm dr}\left(r^2\frac{\mathrm d\Psi}{\mathrm dr}\right) = \left(\frac{2\pi m_0 c}{h}\right)^2\Psi

m0 serait la masse du méson ou pion. La solution physiquement acceptable de cette équation différentielle est le potentiel Ψ(r) ou V(r) de Yukawa (la fonction d'onde se transforme en potentiel) :

\Psi(r)= - g^2 \;\frac{e^{-\left(\frac{2\pi m_0 c}{h}\right) r}}{r}= - g^2 \;\frac{e^{- \frac{2\pi r}{\lambda_C}}}{r}

λC est la longueur d'onde de Compton. Le potentiel est négatif car il s'agit d'une force de liaison, l'interaction forte, le potentiel d'attraction entre deux nucléons à une distance r. Sa portée, de 10 − 15m, rayon du proton, correspond à une masse m0 = 140MeV, celle du méson dont l'existence a été prévue ainsi par Yukawa.

Application du principe d'incertitude

On peut faire un calcul approximatif[2]. Le principe d'incertitude d'Heisenberg peut s'écrire:

\Delta E \times\Delta t \ge \hbar

Supposons que l'incertitude sur le temps soit égale au temps de l'interaction lui-même (on aura ainsi un ΔE minimal puisque Δt sera maximal) et calculons ΔEmin. On a:

\Delta t=\frac{\mathrm{dimension~ de~ la~ cible~ (proton~ de~ rayon~ 1~ fm}=10^{-15} \mathrm{m)}}{\mathrm{vitesse~ du~ projectile~ (}c\mathrm{)}}= \frac{R_P}{c}

\Delta E_{min}=\frac{\hbar}{\Delta {t_{max}}}=\frac{\hbar c}{R_p}=\frac{6,6.10^{-34}\times 3.10^8}{2\pi \times 10^{15}}=3,2.10^{-11} J =3,2.10^{-11}\times6,24.10^{18}=200 MeV On trouve une valeur de l'ordre de grandeur attendu.

On obtient exactement le même résultat en utilisant la relation de de Broglie de l'onde de matière appliquée à la longueur d'onde de Compton du proton:

m= \frac{h}{\lambda v}=\frac{h}{\lambda_P c}=\frac{\hbar}{R_P c}

ce qui donne la même approximation de l'énergie du méson: mc^2=\frac{\hbar c}{R_p}

Transformée de Fourier

La façon la plus simple de comprendre que le potentiel de Yukawa est associé à un champ massif consiste à examiner sa transformée de Fourier. On a

V(r)=\frac{-g^2}{(2\pi)^3} \int e^{i\mathbf{k \cdot r}} 
\frac {4\pi}{k^2+m^2} \;d^3k

où l'intégrale est calculée sur toutes les valeurs possibles du vecteur quantité de mouvement k. Sous cette forme, on peut voir la fraction 4π / (k2 + m2) comme le propagateur ou fonction de Green de l'équation de Klein-Gordon.

Amplitude de Feynman

Single particle exchange

Le potentiel de Yukawa peut être déduit comme amplitude de l'interaction d'une paire de fermions au premier ordre. L'interaction de Yukawa couple le champ fermionique ψ(x) au champ mésonique ϕ(x) avec le terme de couplage

\mathcal{L}_\mathrm{int}(x) = g\overline{\psi}(x)\phi(x) \psi(x)

L'amplitude de diffusion de deux fermions, l'un avec une quantité de mouvement initiale p1 et l'autre avec une quantité de mouvement p2, qui échangent un méson de moment k, est donnée par le diagramme de Feynman à droite.

Les règles de Feynman associent pour chaque sommet un facteur multiplicatif g à l'amplitude; ce diagramme ayant deux sommets, l'amplitude totale sera affectée d'un facteur multiplicatif g2. La ligne médiane qui relie les deux lignes de fermions représente l'échange d'un méson. Selon la règle de Feynman, un échange de particules implique l'utilisation du propagateur; pour un méson massif, ce dernier est − 4π / (k2 + m2). Ainsi, l'amplitude de Feynman pour ce graphe est simplement

V(\mathbf{k})=-g^2\frac{4\pi}{k^2+m^2}

À partir de la section précédente, on voit clairement qu'il s'agit de la transformée de Fourier du potentiel de Yukawa.

Références

  1. Escoubès,B, Leite Lopes, J, Sources et évolution de la physique quantique, Textes fondateurs, EDP Sciences,2005
  2. Foos, J, Manuel de radioactivité à l'usage des utilisateurs,Formascience, Orsay, 1993
  • (en) Gerald Edward Brown and A. D. Jackson, The Nucleon-Nucleon Interaction, (1976) North-Holland Publishing, Amsterdam ISBN 0-7204-0335-9

Équation de Klein-Gordon


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Potentiel de Yukawa de Wikipédia en français (auteurs)

Игры ⚽ Нужен реферат?

Regardez d'autres dictionnaires:

  • Potentiel de yukawa — Un potentiel de Yukawa (appelé également potentiel de Coulomb masqué ) est un potentiel de la forme Hideki Yukawa montra dans les années 1930 qu un tel potentiel provient de l échange d un champ scalaire massif tel que celui d un pion de masse m …   Wikipédia en Français

  • potentiel de Yukawa — Jukavos potencialas statusas T sritis fizika atitikmenys: angl. Yukawa potential vok. Yukawa Potential, n rus. потенциал Юкавы, m pranc. potentiel de Yukawa, m …   Fizikos terminų žodynas

  • Potentiel (homonymie) — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Le terme potentiel peut renvoyer : en mathématiques à : Théorie du potentiel en sciences physiques à la notion générale de potentiel d un champ… …   Wikipédia en Français

  • Yukawa Hideki — Hideki Yukawa Hideki Yukawa Hideki Yukawa (湯川 秀樹, Hideki Yukawa?) …   Wikipédia en Français

  • Potentiel — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Le terme potentiel peut renvoyer : en mathématiques à la théorie du potentiel en démographie à l accroissement d une population, au processus de… …   Wikipédia en Français

  • Yukawa potential — Jukavos potencialas statusas T sritis fizika atitikmenys: angl. Yukawa potential vok. Yukawa Potential, n rus. потенциал Юкавы, m pranc. potentiel de Yukawa, m …   Fizikos terminų žodynas

  • Yukawa-Potential — Jukavos potencialas statusas T sritis fizika atitikmenys: angl. Yukawa potential vok. Yukawa Potential, n rus. потенциал Юкавы, m pranc. potentiel de Yukawa, m …   Fizikos terminų žodynas

  • Hideki Yukawa — (湯川 秀樹) Hideki Yukawa en 1949 Naissance 23 janvier 1907 Tōkyō (Empire du Japon) Décès 8 septembre 1981 …   Wikipédia en Français

  • NUCLÉAIRES (FORCES) — Les noyaux atomiques sont formés de nucléons (neutrons et protons). Ces derniers sont liés par des forces dites nucléaires, de nature différente de celles, gravitationnelles et électromagnétiques, qui sont connues depuis plus longtemps. Dans un… …   Encyclopédie Universelle

  • Force Nucléaire — Cet article concerne la force appelée parfois force forte résiduelle. Pour la force nucléaire forte , voir interaction forte; pour la force nucléaire faible , voir interaction faible. Voir aussi énergie nucléaire pour ses applications. La force… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”