- Nombre de nusselt
-
Nombre de Nusselt
Le nombre de Nusselt (Nu) est un nombre adimensionnel utilisé dans les opérations de transfert thermique. Il représente le rapport entre le transfert thermique total et le transfert par conduction. Si la conduction est seule responsable du transfert de chaleur, alors le nombre de Nusselt vaudra 1.
On le définit de la manière suivante:
avec
-
- h - coefficient de transfert thermique
- Lc - longueur caractéristique
- k - conductivité thermique du fluide
La longueur caractéristique dépend de la géométrie en présence. Dans le cas d'un écoulement dans une conduite, on prendra le diamètre de la canalisation, ou le diamètre hydraulique si la conduite n'a pas une section circulaire. Dans le cas d'une plaque plane, on prendra la longueur de la plaque, ou l'abscisse à compter du bord d'attaque de la plaque. Comme tout nombre sans dimension, la valeur du nombre de Nusselt dépend fortement des grandeurs de référence que l'on choisit, et de la signification physique que l'on entend lui donner (locale ou globale par exemple). Il est notamment important de savoir, lors de l'utilisation d'une corrélation, si le coefficient de convection h a été défini par rapport à une température de référence fixe, ou à une température de mélange locale.Sommaire
Interprétation du nombre de Nusselt
Le nombre de Nusselt local est égal au gradient de température adimensionné à la paroi.
- En posant et , on obtient à partir de l'équation de définition du coefficient de transfert :
Nombre de Nusselt local ou moyen
Utilisation en transfert thermique
L'application du théorème de Buckingham à un problème de convection forcée fait apparaître trois groupements ou nombres sans dimension en relation sous la forme suivante :
avec :
-
- Re le nombre de Reynolds
- Pr le nombre de Prandtl
Cette somme représente une fonction quelconque des deux variables qui ne peut être précisée que par l'expérience :
Ici, l'expérience montre qu'une fonction monôme est généralement adéquate.
L'objectif est, en général, de calculer le Nusselt afin d'en déduire le coefficient de transfert
Principaux résultats et corrélations
Convection naturelle sur une plaque plane
Nu = 0.59(Pr.Gr)0.25 pour 104 < (Pr.Gr) < 109
Nu = 0.13(Pr.Gr)0.33 pour (Pr.Gr) > 109
Gr : nombre de Grashof ; Pr : nombre de Prandtl
Convection forcée dans une conduite en régime laminaire
Si le tube est long (L / D > 0.1Re.Pr) :
Température de paroi uniforme : Nu = 3.66
Flux de chaleur pariétal uniforme : Nu = 4.36
Ces deux résultats ont été obtenus analytiquement.
Si le tube est court, i.e, le régime thermique n'est pas établi, on peut utiliser la corrélation de Sider et Tates :
Nu = 1.86(Re.Pr.D / L)0.33(μ / μp)0.14
Applicable pour : L / D < 0.1Re.Pr ; 100 < Re < 2100 ; 0.6 < Pr < 100
Convection forcée dans une conduite en régime turbulent
Conduites lisses : Corrélation de Dittus-Boelter : Nu = 0.0243Re0.8.Prn
Echauffement : n=0.4 ; Refroidissement : n=0.3
Applicable pour : L / D > 60 ; 104 < Re < 1.2.105 ; 0.7 < Pr < 120
Corrélation de Colburn : Nu = 0.023Re0.8Pr1 / 3 Viscosité évaluée à la température de film (nécessite un calcul itératif)
Voir aussi
- Portail de la physique
Catégorie : Nombre adimensionnel utilisé en thermodynamique -
Wikimedia Foundation. 2010.