- Approximation de boussinesq
-
Approximation de Boussinesq
En dynamique des fluides, l'approximation de Boussinesq, nommée en l'honneur de Joseph Boussinesq, est utilisée dans les équations de modification des fluides pour négliger les forces de compression excepté pour calculer les forces de flottabilité hydrostatique. L'approximation prend ainsi comme hypothèse que les fluides ont une masse volumique constante qui ne dépend que de sa température si l'on considère que la dimension horizontale est beaucoup plus grande que celle verticale. Dans le cas où on retrouve deux fluides de densités différentes en contact, g, la constante de gravité locale, exerce une force vers le bas différente selon la densité de chaque fluide et mène à leur stratification.
Les flux obéissant à l'approximation de Boussinesq sont fréquents dans la nature : zones frontales entre les masses d'air, zones de discontinuité océaniques, vents catabatiques, dispersion des gaz polluants denses et ventilation, climatisation, etc., ce qui rend les calculs physiques plus simples. Par contre, les ondes sonores n'obéissent pas à cette approximation puisqu'elles se propagent par compression de l'air.
Sommaire
Principe
Article détaillé : Équations de Navier-Stokes.La formulation différentielle des équations de masse et de mouvement qui régissent les fluides est donnée par :
- Équation de continuité (ou équation de bilan de la masse)
- Équation de bilan de la quantité de mouvement
Dans ces équations :-
- t représente le temps (unité SI : s) ;
- ρ désigne la masse volumique du fluide (unité SI : kg.m − 3) ;
- désigne la vitesse eulérienne d'une particule fluide (unité SI : m.s − 1) ;
- p désigne la pression (unité SI : Pa) ;
- est le tenseur des contraintes visqueuses (unité SI : Pa) ;
- désigne la résultante des forces massiques s'exerçant dans le fluide (unité SI : N.kg − 1) ;
On voit que chacune de ces deux équations comporte la variable . Si la variation de celle-ci est négligeable, dans le temps et l'espace dans un volume, les équations seront grandement simplifiée car :
Et laisse les équations :
- Équation de continuité appelée alors équation d'incompressibilité
- Équation de bilan de la quantité de mouvement
où désigne la viscosité cinématique du fluide (unité SI : m2.s − 1)
Dans ces dernières, le seul endroit où la masse volumique subsiste est dans et ν. Or dépend de (la constante de gravité) selon l'équilibre hydrostatique.
Utilisation
Si on peut négliger les variations de la masse volumique entre deux fluides, la seule force qui s'exercera sera celle de la gravité. En effet, la variation de ν par la variation de densité dû au changement de température horizontale est très minime dans la plupart des fluides. L'approximation de Boussinesq est donc acceptable dans la plupart des situations à large échelle en météorologie et océanographie.
Supposons deux fluides ayant des densités ρ1 et ρ2 alors que Δρ = ρ1 − ρ2 est négligeable.
On peut alors utiliser un pour les décrire. Dans cette situation, la force hydrostatique sera :.
Inversion
Un des avantages de cette aproximation est que les équations restent les mêmes dans le fluide supérieur et inférieur. Par exemple, dans une pièce chaude dont les fenêtres sont ouvertes sur un environnment plus frais, l'air moins dense de la pièce monte au plafond et l'air extérieur plus dense entre et se dirige vers le plancher. Dans la situation inverse, une chambre froide dans un environnement chaud, l'air chaud extérieur entre dans la chambre et se retrouve au plafond alors que l'air frais de la pièce demeure au sol. Si on est dans des conditions d'approximation de Boussinesq, ces deux situations sont similaires mais miroirs et les équations qui s'appliquent pour l'une sont les mêmes pour l'autre, à un signe négatif près (selon l'équation de g').
Flux non-Boussinesq
Un exemple où l'approximation de s'applique pas est celui de bulles d'air chaud s'élevant dans un liquide. Celles-ci prendront la forme de sphères. Par contre, des gouttes d'eau tombant dans l'air prendront une forme oblonge et se briseront souvent en plus petites gouttes. Il n'y a pas de réciprocité dans ces deux cas, car la Tension superficielle de l'eau s'ajoute à l'équation du comportement des bulles.
Voir aussi
Liens externes
- Portail de la physique
- Portail de la météorologie
- Portail de l’aéronautique
Catégories : Mécanique des fluides | Théorie météorologique - Équation de continuité (ou équation de bilan de la masse)
Wikimedia Foundation. 2010.