Formule Du Multinôme De Newton

Formule Du Multinôme De Newton

Formule du multinôme de Newton

En mathématiques, la formule du multinôme de Newton est une relation donnant le développement d'une puissance entière n d'une somme d'un nombre fini m de termes sous forme d'une somme de produits de puissances de ces termes affectés de coefficients. Nous avons pour tous entiers naturels m et n, et pour tous réels ou complexes x_1,x_2,\dots,x_m,

(x_1 + x_2 + x_3 + \dots + x_m)^n 
 = \sum_{k_1+k_2+k_3+\ldots+k_m=n} {n \choose k_1, k_2, k_3, \dots, k_m}
  x_1^{k_1} x_2^{k_2} x_3^{k_3} \dots x_m^{k_m}.

La somme porte sur toutes les combinaisons d'indices entiers naturels k_1,\dots,k_m tels que k_1+k_2+\dots+k_m = n, certains d'entre eux pouvant être nuls.

Une écriture équivalente mais bien plus concise consiste à sommer sur tous les multi-indices \vec k de dimension m dont le module \left|\vec k\right| = \sum\nolimits_{i=0}^m k_i est égal à n :

\left( \sum_{i=1}^m x_i \right)^n = \sum_{\left|\vec k\right|=n}
{n\choose\vec k} \prod_{i=1}^m x_i^{k_i}

Les nombres

{n \choose k_1, k_2, k_3, \ldots, k_m} = {n\choose\vec k} = \frac{n!}{k_1! k_2! k_3! \dots k_m!} = \frac{n!}{\prod_{i=1}^m k_i!}

sont appelés les coefficients multinomiaux.

La formule du binôme s'obtient comme cas particulier de la formule du multinôme, pour m = 2 ; et dans ce cas les coefficients multinomiaux sont les coefficients binomiaux.

Démonstration

Cette preuve utilise la formule du binôme. On fait une preuve par récurrence sur m.

(i) Pour m = 1, les deux côtés valent x_1^n.

(ii) Supposons le théorème vrai au rang m. Alors

(x_1+x_2+\cdots+x_m+x_{m+1})^n = (x_1+x_2+\cdots+(x_m+x_{m+1}))^n
   = \sum_{k_1+k_2+\cdots+k_{m-1}+K=n}{n\choose k_1,k_2,\ldots,k_{m-1},K} x_1^{k_1}x_2^{k_2}\cdots x_{m-1}^{k_{m-1}}(x_m+x_{m+1})^K

par hypothèse de récurrence. Puis en appliquant le binome de Newton au dernier facteur, il vient que,

 = \sum_{k_1+k_2+\cdots+k_{m-1}+K=n}{n\choose k_1,k_2,\ldots,k_{m-1},K} x_1^{k_1}x_2^{k_2}\cdots x_{m-1}^{k_{m-1}}\sum_{k_m+k_{m+1}=K}{K\choose k_m,k_{m+1}}x_m^{k_m}x_{m+1}^{k_{m+1}}
 = \sum_{k_1+k_2+\cdots+k_{m-1}+k_m+k_{m+1}=n}{n\choose k_1,k_2,\ldots,k_{m-1},k_m,k_{m+1}} x_1^{k_1}x_2^{k_2}\cdots x_{m-1}^{k_{m-1}}x_m^{k_m}x_{m+1}^{k_{m+1}}

ce qui termine la récurrence. Pour la dernière étape, on a utilisé le fait que

{n\choose k_1,k_2,\ldots,k_{m-1},K}{K\choose k_m,k_{m+1}} = {n\choose k_1,k_2,\ldots,k_{m-1},k_m,k_{m+1}},

car

 \frac{n!}{k_1! k_2! \cdots k_{m-1}!K!} \frac{K!}{k_m! k_{m+1}!}=\frac{n!}{k_1! k_2! \cdots k_{m+1}!}

Exemples

Voyez également

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Formule du multin%C3%B4me de Newton ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Formule Du Multinôme De Newton de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать курсовую

Regardez d'autres dictionnaires:

  • Formule du multinome de Newton — Formule du multinôme de Newton En mathématiques, la formule du multinôme de Newton est une relation donnant le développement d une puissance entière n d une somme d un nombre fini m de termes sous forme d une somme de produits de puissances de… …   Wikipédia en Français

  • Formule du multinôme de newton — En mathématiques, la formule du multinôme de Newton est une relation donnant le développement d une puissance entière n d une somme d un nombre fini m de termes sous forme d une somme de produits de puissances de ces termes affectés de… …   Wikipédia en Français

  • Formule du multinôme de Newton — En mathématiques, la formule du multinôme de Newton est une relation donnant le développement d une puissance entière n d une somme d un nombre fini m de termes sous forme d une somme de produits de puissances de ces termes affectés de… …   Wikipédia en Français

  • Formule Du Trinôme De Newton — En mathématiques, la formule du trinôme de Newton ou plus simplement la formule du trinôme est une relation donnant le développement d une puissance d une somme de trois termes en monômes. Pour tous nombres réels ou complexes a, b et c, et pour… …   Wikipédia en Français

  • Formule du trinome de Newton — Formule du trinôme de Newton En mathématiques, la formule du trinôme de Newton ou plus simplement la formule du trinôme est une relation donnant le développement d une puissance d une somme de trois termes en monômes. Pour tous nombres réels ou… …   Wikipédia en Français

  • Formule du trinôme de newton — En mathématiques, la formule du trinôme de Newton ou plus simplement la formule du trinôme est une relation donnant le développement d une puissance d une somme de trois termes en monômes. Pour tous nombres réels ou complexes a, b et c, et pour… …   Wikipédia en Français

  • Formule du trinôme de Newton — En mathématiques, la formule du trinôme de Newton ou plus simplement la formule du trinôme est une relation donnant le développement d une puissance d une somme de trois termes en monômes. Pour tous nombres réels ou complexes a, b et c, et pour… …   Wikipédia en Français

  • Formule du multinome — Formule du multinôme de Newton En mathématiques, la formule du multinôme de Newton est une relation donnant le développement d une puissance entière n d une somme d un nombre fini m de termes sous forme d une somme de produits de puissances de… …   Wikipédia en Français

  • Formule du multinôme — de Newton En mathématiques, la formule du multinôme de Newton est une relation donnant le développement d une puissance entière n d une somme d un nombre fini m de termes sous forme d une somme de produits de puissances de ces termes affectés de… …   Wikipédia en Français

  • Formule Du Binôme De Newton — La formule de Newton est une formule mathématiques donnée par Isaac Newton pour trouver le développement d une puissance entière quelconque d un binôme. Elle est aussi appelée formule du binôme de Newton, ou plus simplement formule du binôme.… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”