Démonstration mathématique

Démonstration mathématique

Démonstration

En mathématiques, une démonstration permet d'établir une proposition à partir de propositions initiales, ou précédemment démontrées à partir de propositions initiales, en s'appuyant sur un ensemble de règles de déduction. La proposition une fois démontrée peut ensuite être elle-même utilisée dans d'autres démonstrations. En ce cas, elle on la nomme généralement lemme. Dans toute situation où les propositions initiales sont vraies, la proposition démontrée devrait être vraie ; on ne pourrait la remettre en cause qu'en remettant en cause une ou plusieurs des propositions initiales ou le système de règles de déduction lui-même.

Cette description peut s'avérer idéale. Il arrive qu'une démonstration s'appuie partiellement sur l'intuition, géométrique par exemple, et donc que toutes les propriétés admises, les axiomes, ne soient pas explicites. Les démonstrations de géométrie que l'on peut trouver dans les Éléments d'Euclide sont par exemple considérées encore aujourd'hui comme des modèles de rigueur, alors qu'Euclide s'appuie en partie sur des axiomes implicites, comme l'a montré David Hilbert dans ses « fondements de la géométrie ». Par ailleurs, les démonstrations des mathématiciens ne sont pas formelles et une démonstration peut être considérée comme correcte dans les grandes lignes, alors que des points resteraient à expliciter en toute rigueur, voire que d'autres sont entachés d'erreurs « mineures ». On rédige une démonstration pour être lue et convaincre les lecteurs, et le niveau de détails nécessaire n'est pas le même suivant les connaissances de ceux-ci. Cependant avec l'avènement des ordinateurs et des systèmes d'aide à la démonstration, des mathématiciens contemporains rédigent des démonstrations qui sont amenées à être vérifiées par des programmes.

Hors du champ des mathématiques, en droit par exemple, une démonstration intervient comme un complément de preuves, c'est une suite d'arguments énoncés en vue d'emporter l'adhésion de l'auditeur ou du lecteur.

Sommaire

Typologie des démonstrations

Les démonstrations mathématiques passent par diverses étapes en suivant une certaine ligne de déduction. Certains grands types de démonstrations ont reçu des dénominations spécifiques.

  • Les mathématiciens parlent assez informellement de démonstration directe, pour une démonstration d'un énoncé n'utilisant que les constituants de celui-ci, de la façon la plus simple possible, sans les recomposer, et sans le déduire de théorèmes plus forts. Dans certains contextes, on peut considérer qu'une démonstration par l'absurde ou par contraposition est indirecte.
  • Une démonstration par l'absurde consiste à montrer qu'en affirmant la négation de l'assertion à démontrer on aboutit à une contradiction, typiquement une proposition et sa négation.
  • Une démonstration est constructive si elle inclut une construction ou un mode de recherche effectif des objets dont elle établit l'existence.
  • Une démonstration par récurrence s'appuie sur une méthode de déduction spécifique (dite récurrence) pour affirmer qu'une assertion est démontrable pour tous les entiers naturels : elle consiste à démontrer l'assertion pour 0 (ou 1), puis à démontrer que de l'assertion pour l'entier n, on peut déduire l'assertion pour l'entier n+1. Il existe des variantes plus générales pour les éléments d'un certain ensemble bien ordonné ou pour des structures qui sont construites d'une façon qui étend celle avec laquelle les entiers naturels sont décrits.
  • Une démonstration probabiliste utilise la théorie des probabilités pour démontrer l'existence certaine d'un objet. Elle ne doit pas être confondue avec l'assertion « ce théorème est probablement vrai ».

Incomplétude et indépendance

Il est parfois possible de démontrer[1] qu'une certaine assertion ne peut pas être démontrée dans un certain système axiomatique dont on aurait pourtant attendu qu'il puisse formaliser « toutes » les mathématiques ; ainsi l'axiome du choix ne peut pas être démontré dans la théorie des ensembles de Zermelo-Fraenkel, non plus que sa négation. De façon analogue, ni l'hypothèse du continu ni sa négation ne sont démontrables dans la théorie de Zermelo-Fraenkel avec axiome du choix. On dit que ces assertions sont indépendantes de ce système d'axiomes : il est par exemple possible d'ajouter aussi bien l'axiome du choix que sa négation à la théorie des ensembles, la théorie restera cohérente (en supposant que la théorie des ensembles le soit). En fait, comme l'énonce le théorème d'incomplétude de Gödel, dans toute théorie axiomatique « raisonnable »[2] qui contient les nombres naturels, il existe des propositions qui ne peuvent pas être démontrées alors qu'elles sont en fait « vraies » ; plus précisément toutes les instances de la proposition par chacun des entiers naturels sont démontrables.

Théorie de la démonstration

La logique mathématique a développé une branche qui est consacrée à l'étude des démonstrations et des systèmes déductifs et s'appelle pour cela la théorie de la démonstration.

Outils d'aide à la démonstration

L'informatique a construit des outils d'aide à la démonstration qui sont de deux ordres:

Notes et références de l'article

  1. Il s'agit d'une démonstration dans la méta-théorie.
  2. On peut vraiment en énoncer les axiomes et, même s'il y en a une infinité, les décrire précisément de façon finie, un énoncé précis de cette notion de théorie raisonnable repose sur la théorie de la calculabilité.

Voir aussi

Wiktprintable without text.svg

Voir « démonstration » sur le Wiktionnaire.

Articles connexes

  • Portail de la logique Portail de la logique
  • Portail de la philosophie Portail de la philosophie
  • Portail des mathématiques Portail des mathématiques

Ce document provient de « D%C3%A9monstration ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Démonstration mathématique de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • mathématique — [ matematik ] adj. et n. f. • 1265; lat. mathematicus, gr. mathêmatikos « scientifique », de mathêma « science » I ♦ Adj. 1 ♦ Relatif aux mathématiques, à la mathématique (cf. ci dessous, II); qui utilise les mathématiques, s exprime par elles.… …   Encyclopédie Universelle

  • démonstration — [ demɔ̃strasjɔ̃ ] n. f. • déb. XIIIe « action de montrer »; a remplacé demostraison; lat. demonstratio, de demonstrare → démontrer 1 ♦ (v. 1155) Opération mentale qui établit une vérité (preuve, induction). Démonstration par l absurde. ⇒ preuve.… …   Encyclopédie Universelle

  • Demonstration constructive — Démonstration constructive Une première vision d une démonstration constructive est celle d une démonstration mathématique qui respecte les contraintes des mathématiques intuitionnistes, c est à dire qui ne fait pas appel à l infini, ni au… …   Wikipédia en Français

  • Démonstration Constructive — Une première vision d une démonstration constructive est celle d une démonstration mathématique qui respecte les contraintes des mathématiques intuitionnistes, c est à dire qui ne fait pas appel à l infini, ni au principe du tiers exclu. Ainsi… …   Wikipédia en Français

  • démonstration — DÉMONSTRATION. s. f. Preuve évidente et convaincante. Démonstration claire, nette, invincible, incontestable. Faire une démonstration. Faire la démonstration d une proposition. Il a trouvé la démonstration de ce problème. Démonstration… …   Dictionnaire de l'Académie Française 1798

  • demonstration — Demonstration. s. f. v. (l S se prononce.) Preuve evidente & convainquante. Demonstration claire, nette, invincible, incontestable. faire une demonstration. faire la demonstration d une proposition. il y a demonstration de cela. il a trouvé la… …   Dictionnaire de l'Académie française

  • mathematique — MATHEMATIQUE. s. f. Science qui a pour objet la quantité continuë & la numerale, & qui en considere les proprietez. Estudier en Mathematique. il sçait les Mathematiques. La Geometrie, l Optique, l Astronomie, la Musique &c. sont parties des… …   Dictionnaire de l'Académie française

  • Démonstration constructive — Une première vision d une démonstration constructive est celle d une démonstration mathématique qui respecte les contraintes des mathématiques intuitionnistes, c est à dire qui ne fait pas appel à l infini, ni au principe du tiers exclu. Ainsi… …   Wikipédia en Français

  • DÉMONSTRATION — n. f. Raisonnement qui prouve la vérité de sa conclusion par déduction et d’une manière évidente et convaincante. Démonstration claire, nette, invincible, incontestable. Faire une démonstration. Faire la démonstration d’une proposition. Il a… …   Dictionnaire de l'Academie Francaise, 8eme edition (1935)

  • DÉMONSTRATION — s. f. Raisonnement qui prouve d une manière évidente et convaincante. Démonstration claire, nette, invincible, incontestable. Faire une démonstration. Faire la démonstration d une proposition. Il a trouvé la démonstration de ce problème.… …   Dictionnaire de l'Academie Francaise, 7eme edition (1835)

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”