Mesure nucléaire

Mesure nucléaire

La mesure nucléaire est une technique de mesure des rayonnements produits par des matériaux nucléaires ou des réactions nucléaires.

Ce type de mesures permet d'obtenir une information sur la nature des matériaux, non seulement au niveau de la composition chimique mais également au niveau de la composition isotopique d'un élément donné.

Les mesures nucléaires sont effectuées à l'aide d'outils regroupés sous le terme générique d'instrumentation nucléaire.

Sommaire

Mesures passives

Les mesures dites passives regroupent les mesures qui ne nécessitent pas l'utilisation d'une action sur l'objet à étudier. Elles impliquent ainsi la détection de rayonnements provenant spontanément de l'objet sans excitation préalable de l'extérieur. Ce type de mesures concerne principalement la caractérisation de matériaux qui émettent naturellement un rayonnement : éléments radioactifs, que ces éléments soient naturels ou bien issus de l'activité industrielle. Les principaux rayonnements détectables sont les neutrons et les photons gamma ou X.

Les photons gamma (ou X) ont pour origine la décroissance radioactive de noyaux (radioactivité naturelle ou induite). les neutrons, eux, ont pour origine la fission spontanée de matériaux fissiles.

Comptage neutron

Les mesures de comptage neutron sont relativement simples. Elles consistent à évaluer le nombre de neutrons provenant de l'échantillon étudié, quelle que soit leur énergie. Leur but est de mettre en évidence la présence d'un élément produisant une fission spontanée, et surtout une quantité anormale de cet élément, vis-à-vis de ce qui devrait être mesuré sans sa présence.

Comptage gamma

De la même manière que pour les neutrons, un comptage des photons gamma peut être effectué de manière à détecter la présence anormale d'un élément émetteur gamma. Le comptage gamma ne permet pas d'identifier spécifiquement la nature de l'élément radioactif.

Spectrométrie Gamma

La spectrométrie gamma est une mesure de comptage plus précise car permettant de classer le nombre de photons gamma en fonction de leur énergie (spectre en énergie). De cette façon, la nature de l'élément qui est à l'origine du gamma peut être déterminée.

La spectrométrie gamma peut ainsi mener à la détermination précise de la quantité des différents éléments radioactifs mesurés, via des calculs prenant en compte tous les effets subits par les photons gammas entre leur émission dans l'objet étudié et le détecteur utilisé, ainsi qu'au sein même du détecteur.

Mesures actives

Les mesures dites actives, a contrario des mesures passives, utilisent un moyen pour induire l'émission de rayonnement qui sera ensuite détecté pour caractériser l'objet étudié. Les mesures actives, bien qu'utilisant un rayonnement sur l'objet inspecté, restent des mesures non destructives, l'intégrité physique de l'objet n'étant pas altéré par le processus de mesure.

Ces mesures nucléaires actives sont décrites d'une part par le type de rayonnement entrant et d'autre part par le rayonnement émis qui sera détecté.

Le rayonnement sonde utilisé le plus généralement est de deux types : neutrons et photons (rayonnement gamma ou rayons X)

Interrogation neutronique active (INA)

L'interrogation avec des neutrons peut permettre de caractériser plusieurs type de matériaux : des matériaux ordinaires (caractérisation chimique) et des matériaux nucléaires (caractérisation isotopique).

Activation neutronique par diffusions inélastiques

La diffusion inélastique est un processus dans lequel un neutron incident va interagir avec un noyau d'atome en modifiant son énergie cinétique et sa quantité de mouvement, donc sa direction. Le noyau d'atome est lui aussi mis en mouvement avec une certaine énergie cinétique et une vitesse donnée, dépendant de son angle de déviation.

En outre, dans une interaction de diffusion inélastique, la totalité de l'énergie cinétique n'est pas conservée : une partie de l'énergie cinétique du neutron incident est transformée en énergie d'excitation du noyau cible. Ce dernier se trouve alors dans un état d'excitation et devient radioactif pour une durée qui peut varier d'un temps très court (quelques picosecondes) à une durée plus longue (quelques microsecondes).

Le noyau se désexcite par l'émission d'un rayonnement gamma qui est caractéristique de l'élément considéré.

Cette technique est utilisée pour mettre en évidence la présence d'éléments chimiques dans un matériau (analyses stœchiométriques). La quantité de photons gamma d'une certaine énergie (raie) qui est émise est proportionnelle à la quantité de l'élément recherché, ainsi qu'au nombre de neutrons interagissant dans le milieu inspecté.

La mesure de distributions stœchiométriques nécessitent ainsi de connaître avec le plus de précision possible de nombreux paramètres :

  • le flux de neutrons utilisé ;
  • leur distribution en énergie (spectre neutronique) ;
  • les effets d'atténuation du flux de neutrons et de modification du spectre neutronique dans la matière ;
  • les sections efficaces d'interaction neutron-matière ;
  • les caractéristiques nucléaires des éléments recherché (raies gamma, probabilités d'émission, …)  ;
  • les effets d'atténuation des photons gamma émis au sein du matériau inspecté ;
  • les interactions des photons gamma au sein du détecteur utilisé.

Les raies gamma caractéristiques qui sont le plus facilement exploitables sont principalement des raies à haute énergie. Pour produire une raie gamma de 6 MeV, les neutrons incidents devront ainsi avoir une énergie d'un minimum de 6 MeV.

Les sources de neutrons de haute énergie sont rares. La technique massivement utilisée pour produire des neutrons de haute énergie recourt à l'utilisation de générateurs électriques qui produisent une accélération d'ions deutérium sur une cible de tritium pour générer une réaction de fusion nucléaire (d,T) et l'émission de neutrons de 14.1 MeV. Le fabricant français EADS Sodern est un des quelques spécialistes de ce type de générateurs de neutrons dans le monde.

Les détecteurs de rayonnement gamma utilisés sont exactement les mêmes que ceux utilisés en spectrométrie gamma passive : semi-conducteurs pour obtenir une haute résolution en énergie ou scintillateurs pour privilégier le rendement de détection au détriment de la résolution en énergie.

Activation neutronique par captures radiatives

La méthode d'activation neutronique peut également être fondée sur une réaction dans laquelle le neutron incident sera absorbé par le noyau de l'atome cible. Dans ce cas, le noyau se transforme en un isotope différent (ayant un neutron supplémentaire) qui émettra un photon gamma d'énergie caractéristique au moment de la capture. Ce type de réaction est appelée capture radiative. Les sections efficaces des réactions de capture radiative sont maximales lorsque l'énergie des neutrons incidents est minimale. C'est ainsi à l'aide de neutrons thermiques qu'est effectuée ce type d'examen. L'application de cette méthode requiert ainsi la nécessité de thermaliser les neutrons qui sont produits par un générateur de neutrons ou une source isotopique. Cette thermalisation peut être contrôlée spécifiquement en utilisant des écrans hydrogénés ou bien peut être exploitée par le ralentissement naturel prenant place dans le volume de l'objet inspecté (surtout lorsqu'il contient un forte quantité de matériaux hydrogénés).

Fissions induites (n,f)

L'examen de matériaux qui possèdent certaines caractéristiques physiques comme par exemple la possibilité de fissionner sous l'impact de neutrons est exploitable en contrôlant parfaitement les paramètres associés au rayonnement neutronique incident.

La fission d'éléments fissiles peut être utilisée pour la mise en évidence de la présence de ces éléments au sein d'un mélange hétérogène, mais également à des fins de quantification de matière. Par exemple, évaluer le plus précisément possible la quantité d'uranium 235 (élément fissile) par rapport à la quantité d'uranium 238 (élément non fissile) présente au sein d'un combustible nucléaire à uranium enrichi.

Autres réactions :(n,2n), (n,p), ...

Interrogation photonique active (IPA)

L'interrogation avec des photons peut également permettre de caractériser des matériaux ordinaire comme des matériaux nucléaires.

Radiographie et radioscopie

Absorptiométrie, densitométrie, tomographie

Photofissions (γ,f)

Réactions photonucléaires (γ,n)

Fluorescence nucléaire de résonance

Applications industrielles

Les applications industrielles des mesures nucléaires sont nombreuses.

Contrôle non destructif de matériaux par radiographie

Radiographie et radioscopie X

Gammagraphie

Contrôles non destructifs par neutronographie

Article détaillé : Neutronographie.

Sources de neutrons pour la neutronographie

Installations en France

OSIRIS ISIS ORPHEE

Techniques dérivées de la neutronographie

Contrôle de procédés

Jauges de niveau

Jauges d'épaisseur

Jauges de densité

Jauges d'homogénéité

Applications basées sur l'ionisation des gaz

Elimination de l'électricité statique

Détecteurs de fumée

Analyseurs chromatographes

Traceurs radioactifs industriels

Biologie moléculaire

Identification et analyse de matériaux par interrogation neutronique

Géologie, pétrole

Caractérisation des déchets nucléaires

Contrôle de procédés dans l’industrie nucléaire

Mines et cimentiers

Sécurité

Caractérisation de matériaux par interrogation photonique

Fluorescence X

Analyse par diffraction X

Photoactivation de la matière

Analyses géologiques (Diagraphie)

Recherche pétrolière Analyse de sous-sols Recherche de zones aquifères

Médecine nucléaire

Radiographie Scanner et Tomographie Tomographie par émission de positons (TEP) Imagerie fonctionnelle et imagerie moléculaire Scintigraphie Radiothérapie Brachythérapie Protonthérapie Neutronthérapie Alpha immunothérapie


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Mesure nucléaire de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • NUCLÉAIRE (CHIMIE) — La chimie nucléaire s’est développée à partir des découvertes de la radioactivité naturelle et de la radioactivité artificielle et correspond aux recherches effectuées sur la structure des noyaux des atomes, sur les réactions entre noyaux, sur… …   Encyclopédie Universelle

  • NUCLÉAIRE (MÉDECINE) — La découverte de la radioactivité artificielle en 1934 par Irène et Frédéric Joliot Curie a été à l’origine de l’émergence d’une discipline médicale nouvelle, la médecine nucléaire. Cette découverte a conduit à la production des isotopes… …   Encyclopédie Universelle

  • NUCLÉAIRE (INDUSTRIE) - Réacteurs nucléaires — De nombreuses réactions nucléaires sont exothermiques et l’énergie dégagée est, par unité de masse, environ un million de fois plus grande que dans les réactions chimiques qui, elles, ne font intervenir que les électrons périphériques des atomes; …   Encyclopédie Universelle

  • NUCLÉAIRE (ARMEMENT) - Aspects scientifiques et techniques — Bien qu’en ce qui concerne les armes à fission les principes de fonctionnement soient connus du public, beaucoup de solutions théoriques et techniques sont encore protégées par un secret rigoureux justifié dès l’origine par le souci de retarder – …   Encyclopédie Universelle

  • NUCLÉAIRE (DROIT) — Par «droit de l’énergie nucléaire», terme employé de préférence aujourd’hui à «droit atomique», on entend «l’ensemble des règles juridiques spécifiques qui réglementent les conséquences sociales des phénomènes physiques de libération d’énergie… …   Encyclopédie Universelle

  • NUCLÉAIRE (INDUSTRIE) - Stockage des déchets radioactifs — Stockage des déchets radioactifs Comme beaucoup d’activités humaines, l’industrie nucléaire produit des déchets. Ils sont en quantité relativement faible par rapport à ceux qui résultent d’autres productions industrielles et humaines, mais ils… …   Encyclopédie Universelle

  • NUCLÉAIRE (ÉNERGIE) — Après plusieurs décennies de recherches sur la constitution de la matière (cf. chimie NUCLÉAIRE), c’est la découverte de la fission du noyau atomique en 1939 qui a marqué véritablement le début de l’énergie nucléaire. Cette découverte provoqua… …   Encyclopédie Universelle

  • MESURE - Mesures thermiques — Les mesures thermiques sont nées du besoin de traduire par des repères numériques les sensations de chaud et de froid liées à la température. Celle ci est donc directement accessible à nos sens, mais d’autres grandeurs thermiques moins évidentes… …   Encyclopédie Universelle

  • MESURE - Mesures magnétiques — Les mesures magnétiques se pratiquent généralement par des chercheurs ou des laboratoires spécialisés. Elles nécessitent un appareillage qui est à faible diffusion, contrairement à ce qui se passe dans le domaine des mesures électriques ou… …   Encyclopédie Universelle

  • Nucléaire militaire — Arme nucléaire Explosion atomique de 14 kilotonnes lors de l essai américain XX 27 CHARLIE sur le site d essais du Nevada en 1951. L arme nucléaire est une arme de destruction massive qui utilise l énergie dégagée soit par la fission de noyaux… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”