Théorème de Matiiassevitch

Théorème de Matiiassevitch
Cet article court présente un sujet plus développé dans : Ensemble diophantien et Dixième problème de Hilbert.

Le théorème de Matiiassevitch (orthographié également Matiyasevich), dit encore théorème de Davis-Putnam-Robinson-Matiyasevich, établit que les ensembles diophantiens, c'est-à-dire les ensembles des solutions entières positives d'une équation diophantienne à paramètres eux mêmes entiers positifs, sont exactement les ensembles récursivement énumérables d'entiers naturels. Il a pour conséquence immédiate l'indécidabilité du problème général de savoir si un entier naturel (ou n-uple d'entiers naturels) est solution ou non d'une équation diophantienne, ce qui est une solution négative au dixième problème de Hilbert.


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Théorème de Matiiassevitch de Wikipédia en français (auteurs)

Игры ⚽ Нужен реферат?

Regardez d'autres dictionnaires:

  • Theoreme d'incompletude de Godel — Théorème d incomplétude de Gödel Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und… …   Wikipédia en Français

  • Théorème d'incomplétude — de Gödel Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (Sur les… …   Wikipédia en Français

  • Théorème d'incomplétude de Godel — Théorème d incomplétude de Gödel Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und… …   Wikipédia en Français

  • Théorème d'incomplétude de Gödel — Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (Sur les propositions …   Wikipédia en Français

  • Théorème d'incomplétude de gödel — Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (Sur les propositions …   Wikipédia en Français

  • Théorème d'indécidabilité — Théorème d incomplétude de Gödel Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und… …   Wikipédia en Français

  • Théorème de Gödel — Théorème d incomplétude de Gödel Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und… …   Wikipédia en Français

  • Théorème de Youri Matiiassevitch — Dixième problème de Hilbert Le dixième problème de Hilbert demande de trouver une méthode algorithmique générale pour la recherche des solutions entières des équations diophantiennes à plusieurs inconnues, c est à dire des équations polynômiales… …   Wikipédia en Français

  • Indéterminabilité — Théorème d incomplétude de Gödel Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und… …   Wikipédia en Français

  • Théorèmes d'incomplétude de Gödel — Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (en) « Sur… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”