- Plan fondamental
-
En astronomie, le plan fondamental est la surface (2D) dans un espace de paramètres en trois dimensions représenté par les coordonnées , et , sur laquelle sont placées les galaxies elliptiques, selon leurs paramètres. Entre d'autres termes, cela correspond à la relation mathématique entre le rayon effectif , la brillance de surface moyenne , et la vitesse de dispersion centrale d'une galaxie elliptique.
Sommaire
Justification
Nombre des caractéristiques d'une galaxie sont liées. Par exemple, une galaxie ayant une luminosité plus importante aura un rayon effectif plus large. Ces relations interviennent pour la détermination de la distance d'une galaxie, tâche ardue en astronomie. Par exemple, la vitesse de dispersion centrale d'une galaxie elliptique peut être mesurée sans connaître la distance et peut permettre d'en déduire la luminosité de la galaxie, qui est directement reliée à la distance.
Relations mathématiques
Les relations suivantes ont été déterminées empiriquement[1],[2]:
- où est le rayon effectif et est la brillance de surface moyenne à l'intérieur de .
- Puisque , on peut utiliser la relation précédente pour obtenir et donc : . Par conséquent, les galaxies elliptiques les plus lumineuses ont une brillance de surface plus faible.
- La relation de Faber-Jackson (Faber & Jackson 1976) relie la luminosité d'une galaxie à sa vitesse de dispersion centrale. Analytiquement, cela correspond à . Cette relation est analogue à la loi de Tully-Fisher
- Si la vitesse de dispersion est reliée à la luminosité, et si la luminosité est reliée au rayon effectif, alors, il s'ensuit que la vitesse de dispersion centrale est directement reliée au rayon effectif
Utilité
L'utilité de cet espace de paramètres à 3 dimensions est d'autant plus pratique lorsque l'on produit le graphique en fonction de . L'équation de la régression linéaire de ce graphique est alors
Par conséquent, en mesurant des quantités observables telles que la brillance de surface et la vitesse de dispersion (tous deux indépendants de la distance de l'observateur à la source), on peut déterminer le rayon effectif (en kpc généralement). Ensuite, connaissant ce rayon effectif (longueur linéaire) et en mesurant la taille angulaire, on en déduit la distance de la galaxie, en appliquant les règles de bases de la trigonométrie, par exemple l'approximation d'un petit angle.
Variations
Une utilisation plus ancienne du plan fondamental est la relation entre et (Dressler et al. (1987)) :
est le diamètre (en kpc) à l'intérieur duquel la brillance de surface moyenne est égale à 20,75 mag.arcsec − 2. L'erreur de cette relation est de l'ordre de 15% entre les galaxies. Cependant, en 1991, D. Gudehus[3]montra que cette relation présentait une erreur systématique sur la distance et la magnitude absolue.
Bibliographie
- (en) Binney J., Merrifield M., Galactic Astronomy, Princeton University Press, 1998.
- (en) Carroll B.W., Ostlie D.A., Modern Astrophysics, Addison Wesley Longman, 1996.
Références
- (en) S. Djorgovski, Marc Davis - Fundamental properties of elliptical galaxies - Astrophysical journal, Part 1 (ISSN 0004-637X), vol. 313, p. 59-68, 1987.
- (en) J. Kormendy, S. Djorgovski - Surface photometry and the structure of elliptical galaxies - Annual review of astronomy and astrophysics, vol. 27, p. 235-277, 1989.
- (en) D. Gudehus - Systematic bias in cluster galaxy data, affecting galaxy distances and evolutionary history, Apj 382, 1992.
Wikimedia Foundation. 2010.