- Laser a rayons X
-
Laser à rayons X
Un laser à rayon X, ou laser X-UV (soft x-ray laser en anglais, Roetgen laser en allemand) est un dispositif qui transpose le principe et les propriétés du laser aux ondes électromagnétiques de courte longueur d'onde : de l'ultraviolet extrême aux rayons X. On distingue deux types de lasers à rayons X : les lasers X à électrons libres (XFEL ou x-ray free electron laser) et les lasers X à plasma (Plasma-based soft x-ray laser).
Sommaire
Principes généraux
Deux grandes difficultés apparaissent lorsque l'on cherche à réaliser un laser à rayons X:
- Il faut disposer d'un milieu à gain capable d'amplifier un rayonnement composé de photons X très énergétiques (plusieurs dizaines voire centaines électron-volt).
- Il faut se passer de cavité optique résonnante. La durée de vie du milieu à gain est en effet de trop courte durée pour permettre au rayonnement laser X d'effectuer un nombre important d'aller-retour. Par ailleurs, les optiques fonctionnant dans ce domaine de longueur d'onde (optique en incidence rasante, miroirs multicouches) sont d'un emploi délicat.
Pour résoudre la première difficulté, on utilise des milieux à gain possédant de très grandes densités d'énergie :
- Un faisceau d'électrons relativistes produit par un accélérateur de particules. Ce faisceau est injecté dans un onduleur, une structure où règne un champ magnétique spatialement périodique. Les électrons "ondulent" dans ce dispositif en émettant du rayonnement X similaire au rayonnement synchrotron.
- Un gaz chaud fortement ionisé ou plasma. Ce milieu contient de grandes densités d'ions multichargés entre les niveaux desquels on réalise une inversion de population. Il peut être obtenu par des décharges électriques intenses (I> 10kA) dans un gaz. Le plus souvent cependant le plasma qui jouera le rôle de milieu à gain est généré en focalisant un laser intense sur une cible solide ou gazeuse.
L'absence de cavité est contournée en faisant fonctionner ces lasers en régime d'amplification de l'émission spontanée (ASE Amplified spontaneous Emission) ou en régime injecté".
- Amplification de l'émission spontanée. Les émissions spontanées, aléatoires, émise au début du milieu à gain sont amplifiées en un seul passage dans ce dernier. Pour obtenir un rayonnement X intense, on utilise des milieux à gain très longs (XFEL) où possédant un gain très élevé (lasers à plasma). Le rayonnement émis dans ce régime ASE est toutefois spatialement incohérent. La grande longueur du milieu à gain permet toutefois de filtrer spatialement le rayonnement pour obtenir des faisceaux cohérents et peu divergent comme dans un laser classique.
- Fonctionnement en mode injecté. Un rayonnement X spatialement cohérent mais de faible intensité est injecté à l'entrée du milieu à gain afin d'être amplifié. Cette "graine" de rayonnement cohérent doit toutefois avoir une intensité supérieure à l'émission spontanée. Ce rayonnement X "parfait" initial peut être, par exemple, une harmonique d'ordre élevé d'un laser "classique" intense.
Les lasers X à électrons libres
Voir aussi: x-ray free-electron laser
De grands projets de lasers X à électrons libres viennent de rentrer en service où sont en cours de développement. Citons par exemple le laser X de DESY à Hambourg ou le projet Arc-en-Ciel en France.
Grâce à leurs courtes durées d'impulsions (femtoseconde) et leur courte longueur d'onde, les lasers X à électrons libres, permettraient de « filmer » le comportement de molécules uniques lors de réactions physico-chimiques ou biologiques.
Les lasers X à Plasma
Schémas de pompage envisagés
Quelques réalisations
La totalité des lasers X à plasma opérationnels reposent sur le schéma de pompage collisionnel
- Laser X Quasistationnaire
- Laser X transitoire
- Laser X OFI
Installations et applications
Plusieurs installations lasers X à plasma fonctionnent actuellement dans le monde: Le PALS à Prague, le laser COMET au LLNL aux Etats-Unis, le laser APR au Japon. Il existe également un projet de laser à rayons X (LASERIX) développé par l'université Paris-Sud XI, au Laboratoire d'optique appliquée (LOA) en cours de développement.
Ce type de lasers est actuellement utilisé pour sonder les plasmas produits par laser ou pour étudier les infimes déformations de surfaces soumises à des champs électriques intenses.
Références
Voir aussi
- Station LASERIX
- Laboratoire d'optique appliquée
- Laboratoire de l'interaction du rayonnement X avec la matière
- Site du projet européen TUIXS
- OpticsValley
- Les lasers de l'extrême , Sciences et Avenir
- Portail de la physique
Catégories : Physique quantique | Rayons X | Laser | Plasma
Wikimedia Foundation. 2010.