Diagramme de venn

Diagramme de venn

Diagramme de Venn

Les diagrammes d'Euler, de Venn, de Carroll, sont des schémas géométriques utilisés pour représenter des relations logico-mathématiques. Créés pour visualiser la structure logique des syllogismes, ils sont couramment utilisés pour l'étude des relations entre ensembles.

Sommaire

Diagrammes d'Euler

En vue d'étudier systématiquement les syllogismes, Leonhard Euler (1707-1783) eut l'idée de représenter géométriquement les attributs (ou propriétés, ou termes d'un syllogisme) : à chacun il associa un cercle, dont l'intérieur représentait l'extension (le domaine de validité) de l'attribut. La prise en compte simultanée de deux attributs (pour représenter une prémisse par exemple) conduisait à envisager trois configurations possibles :


Les trois diagrammes d'Euler à deux termes


Pour trois attributs, situation à prendre en compte pour un syllogisme, le nombre configurations était de l'ordre d'une quinzaine, voire nettement plus si on prend en compte l'ordre des termes en vue d'une utilisation syllogistique. Exemples de configurations à valeur syllogistique :


Trois diagrammes d'Euler à valeur syllogistique


Exemples de configurations non syllogistiques :


Trois diagrammes d'Euler sans valeur syllogistique


Certaines configurations à quatre attributs (ou plus) ne peuvent pas être représentées par la méthode d'Euler. Par exemple, quatre cercles ne peuvent pas avoir toutes leurs intersections (deux à deux, trois à trois, et quatre) disjointes.

Les "diagrammes d'Euler" sont couramment utilisés pour représenter les positions relatives de plusieurs ensembles (inclusion, intersection, disjonction).

Diagrammes de Venn

Un siècle plus tard, John Venn (1834-1923) opéra plusieurs modifications importantes dans la représentation eulérienne des attributs :

  • remplacement des cercles par des courbes fermées simples (sans points doubles ; par exemple des ellipses)
  • utilisation dans tous les cas d'une unique représentation pour chaque ensemble de n attributs, dans laquelle toutes les conjonctions possibles p à p des attributs existent
  • coloration (grisé ou hachures) des régions connues comme « vides » (conjonctions qu'on sait impossibles)
  • indication par un signe graphique des régions connues comme « non vides » (conjonctions qu'on sait possibles)

Ainsi les trois configurations d'Euler pour le cas de deux attributs deviennent :


Les trois diagrammes de Venn à deux termes


Venn pouvait représenter toutes les configurations associées à quatre attributs, voire cinq en trichant quelque peu avec ses principes (une zone centrale devait être considérée comme « extérieure »). Sa méthode fut étendue un siècle plus tard à six attributs par A. W. F. Edwards dans son livre Cogwheels of the Mind. Les diagrammes qui suivent sont créés à partir de ses travaux :


Diagramme d'Edwards-Venn à trois ensembles Venn-three.svg Diagramme d'Edwards-Venn à quatre ensembles Edwards-Venn-four.svg
Diagramme d'Edwards-Venn à cinq ensembles Edwards-Venn-five.svg Diagramme d'Edwards-Venn à six ensembles Edwards-Venn-six.svg
Source : Ian Stewart, Another Fine Math You've Got Me Into, 1992, chap. 4.

Exemple de représentation d'un syllogisme (Barbara) par diagramme de Venn


Venn-barbara.png


Diagrammes de Carroll

Contemporain de Venn, Lewis Carroll (1832-1898) refusait la dissymétrie posée a priori entre l'intérieur et l'extérieur, c'est-à-dire entre l'attribut et sa négation. Ainsi pour Carroll l'attribut mortel et l'attribut immortel ont la même valeur, et il n'est pas légitime que l'un soit représenté par un espace clos et l'autre par un espace non clos. Il proposa donc une représentation dans laquelle l'"univers" est un carré, et chaque attribut divise ce carré en deux parties égales. Dès lors deux attributs divisent l'univers en quatre, trois attributs en huit, et ainsi de suite.


Diagrammes de Carroll pour 1, 2, 3 et 4 attributs


Renonçant à la connexité des subdivisions, Carroll pouvait représenter jusqu'à huit attributs simultanés. Par ailleurs il conservait le principe de Venn de signaler les régions connues comme vides et celles connues comme non vides. Les trois configurations d'Euler pour n=2 deviennent pour Carroll :


Les trois diagrammes de Carroll à deux termes


Exemple de représentation d'un syllogisme (Barbara) par diagramme de Carroll


Carroll-barbara.png


Source bibliographique

  • Jean Gattegno et Ernest Coumet, Logique sans peine, éd. Hermann, 1966. Traduction française (partielle) de l'ouvrage Symbolic Logic publié par Lewis Carroll en 1896-97 ; contient des références à l'ouvrage Symbolic Logic de Venn.


  • Portail des mathématiques Portail des mathématiques

Ce document provient de « Diagramme de Venn ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Diagramme de venn de Wikipédia en français (auteurs)

Игры ⚽ Поможем сделать НИР

Regardez d'autres dictionnaires:

  • Diagramme De Venn — Les diagrammes d Euler, de Venn, de Carroll, sont des schémas géométriques utilisés pour représenter des relations logico mathématiques. Créés pour visualiser la structure logique des syllogismes, ils sont couramment utilisés pour l étude des… …   Wikipédia en Français

  • diagramme de Venn — Venn o diagrama statusas T sritis automatika atitikmenys: angl. Venn diagram vok. Venn Diagramm, n rus. диаграмма Венна, f pranc. diagramme de Venn, m ryšiai: sinonimas – Veno diagrama …   Automatikos terminų žodynas

  • diagramme de Venn — ● diagramme de Venn Représentation graphique d opérations telles que réunion, intersection, etc., effectuées sur des ensembles considérés comme parties d un référentiel …   Encyclopédie Universelle

  • Diagramme de Venn — Les diagrammes d Euler, de Venn et de Carroll sont des schémas géométriques utilisés pour représenter des relations logico mathématiques. Créés pour visualiser la structure logique des syllogismes, ils sont couramment utilisés pour l étude des… …   Wikipédia en Français

  • Diagramme d'Euler — Diagramme de Venn Les diagrammes d Euler, de Venn, de Carroll, sont des schémas géométriques utilisés pour représenter des relations logico mathématiques. Créés pour visualiser la structure logique des syllogismes, ils sont couramment utilisés… …   Wikipédia en Français

  • diagramme — [ djagram ] n. m. • 1584; gr. diagramma « dessin » 1 ♦ Tracé géométrique sommaire des parties d un ensemble et de leur disposition les unes par rapport aux autres. ⇒ croquis, 3. plan, schéma. Diagramme floral : représentation schématique en coupe …   Encyclopédie Universelle

  • Diagramme — camembert Sur les autres projets Wikimedia : « Diagramme », sur le Wiktionnaire (dictionnaire universel) Un diagramme est une représentation visuelle simplifiée et structurée des con …   Wikipédia en Français

  • Diagramme en barres — Diagramme Voir « diagramme » sur le Wiktionnaire …   Wikipédia en Français

  • Diagramme en bâtonnets — Diagramme Voir « diagramme » sur le Wiktionnaire …   Wikipédia en Français

  • Diagramme en tiges — Diagramme Voir « diagramme » sur le Wiktionnaire …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”