Bande d'énergie

Bande d'énergie

Théorie des bandes

Représentation schématique des bandes d'énergie d'un solide.

En physique du solide, la théorie des bandes est une modélisation des valeurs d'énergie que peuvent prendre les électrons d'un solide à l'intérieur de celui-ci. De façon générale, ces électrons n'ont la possibilité de prendre que des valeurs d'énergie comprises dans certains intervalles, lesquels sont séparés par des "bandes" d'énergie interdites. Cette modélisation conduit à parler de bandes d'énergie ou de structure de bandes.

Selon la façon dont ces bandes sont réparties, il est possible d'expliquer au moins schématiquement les différences de comportement électrique entre un isolant, un semi-conducteur et un conducteur.

Sommaire

Généralités

Dans un atome isolé, l'énergie des électrons ne peut posséder que des valeurs discrètes et bien définies. Par contraste, dans le cas d'un électron parfaitement libre, elle peut prendre n'importe quelle valeur positive. Dans un solide, la situation est intermédiaire : l'énergie d'un électron peut avoir n'importe quelle valeur à l'intérieur de certains intervalles. Cette propriété conduit à dire que le solide possède des bandes d'énergies permises, séparées par des bandes interdites. Cette représentation en bandes d'énergie est une représentation simplifiée et partielle de la densité d'états électroniques. Les électrons du solide se répartissent dans les niveaux d'énergie autorisés ; cette répartition dépend de la température et obéit à la statistique de Fermi-Dirac.

Lorsque la température du solide tend vers le zéro absolu, deux bandes d'énergie permises jouent un rôle particulier. La dernière bande complètement remplie est appelée « bande de valence ». La bande d'énergie permise qui la suit est appelée « bande de conduction ». Elle peut être vide ou partiellement remplie. L'énergie qui sépare la bande de valence de la bande de conduction est appelée le « gap ».

Les électrons de la bande de valence contribuent à la cohésion locale du solide (entre atomes voisins) et sont dans des états localisés. Ils ne peuvent pas participer aux phénomènes de conduction électrique. À l'inverse, les états de la bande de conduction sont délocalisés. Ce sont ces électrons qui participent à la conduction électronique. Les propriétés électroniques du solide dépendent donc essentiellement de la répartition des électrons dans ces deux bandes, ainsi que de la valeur du gap : dans le cas des isolants, les deux bandes sont séparées par un gap important. Pour les conducteurs, le gap n'existe pas et la bande de conduction se superpose à une partie de la bande de valence. Les semi-conducteurs possèdent quant à eux un gap suffisamment faible pour que des électrons aient une probabilité non négligeable de le franchir par simple excitation thermique lorsque la température augmente.

Les bandes de valence et de conduction jouent des rôles identiques à celui des orbitales moléculaires HOMO (highest occupied molecular orbital) et LUMO (lowest unoccupied molecular orbital) dans la théorie des orbitales frontières.

Métal, isolant, semi-conducteur

Selon le remplissage des bandes à T = 0 K

Lorsque la température tend vers 0, on distingue donc trois cas selon le remplissage des bandes et la valeur du gap.

  • Premier cas : la bande de conduction est partiellement remplie. Le solide contient donc des électrons susceptibles de participer aux phénomènes de conduction, il est conducteur.
  • Deuxième cas : la bande de conduction est vide et le gap est grand (de l'ordre de 10 eV par exemple). Le solide ne contient alors aucun électron capable de participer à la conduction. Le solide est isolant.
  • Troisième cas : la bande de conduction est vide mais le gap est plus faible (de l'ordre de 1 à 2 eV). Le solide est donc isolant à température nulle, mais une élévation de température permet de faire passer des électrons de la bande de valence à la bande de conduction. La conductivité augmente avec la température : c'est la caractéristique d'un semi-conducteur.

Relation avec le niveau de Fermi

L'occupation des différents états d'énergie par les électrons suit la distribution de Fermi-Dirac. Il existe une énergie caractéristique, le niveau de Fermi, qui fixe, lorsque le matériau est à une température de zéro Kelvin, le niveau d'énergie jusqu'où on trouve les électrons, c'est-à-dire le niveau d'énergie du plus haut niveau occupé. Le niveau de Fermi représente le potentiel chimique du système. Son positionnement dans le diagramme des bandes d'énergie est relié à la façon dont les bandes sont occupées.

  • Dans les conducteurs, le niveau de Fermi est dans une bande permise qui est dans ce cas la bande de conduction. Les électrons peuvent alors se déplacer dans le système électronique, et donc circuler d'atomes en atomes.
  • Dans les isolants et les semi-conducteurs, le niveau de Fermi est situé dans la bande interdite qui sépare les bandes de valence et de conduction.

Le gaz d'électrons quasi libres

Apparition de la bande interdite dans le cadre d'un gaz d'électron quasi-libre.

Dans le cas du gaz d'électrons quasi libres, on considère le potentiel électrostatique périodique créé par les noyaux atomiques comme faible. On le traite comme une perturbation affectant un gaz d'électrons libres. Le traitement de ce problème entre dans le cadre de la théorie des perturbations. On résout donc l'équation de Schrödinger avec le potentiel périodique créé par les noyaux et on trouve les fonctions propres et les énergies propres de électrons dans le cristal. Ce traitement est approprié dans le cas des métaux nobles, des métaux alcalins et de l'aluminium, par exemple.

La théorie des liaisons fortes

Dans le cadre de la théorie des liaisons fortes, on tente de dériver les propriétés du solide à partir des orbitales atomiques. On part des états électroniques des atomes séparés et on considère la manière dont ils sont modifiés par le voisinage des autres atomes. Les effets à prendre en compte sont notamment l'élargissement des bandes (un état a une énergie discrète dans la limite atomique, mais occupe une bande d'énergie dans le solide) et l'hybridation entre les bandes d'énergies proches.

Voir aussi

Liens internes

Notes et références


  • Portail de la physique Portail de la physique
Ce document provient de « Th%C3%A9orie des bandes ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Bande d'énergie de Wikipédia en français (auteurs)

Игры ⚽ Нужен реферат?

Regardez d'autres dictionnaires:

  • bande d’énergie — energijos juosta statusas T sritis Standartizacija ir metrologija apibrėžtis Elektronų labai artimų diskretinių energijos lygmenų sistema kietajame kūne. atitikmenys: angl. energy band vok. Energieband, n rus. энергетическая зона, f pranc. bande… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • bande d’énergie — energijos juosta statusas T sritis fizika atitikmenys: angl. energy band vok. Energieband, n; Energiezone, f rus. энергетическая зона, f; энергетическая полоса, f pranc. bande d’énergie, f; bande énergétique, f …   Fizikos terminų žodynas

  • bande d’énergie interdite — draudžiamosios energijos juosta statusas T sritis fizika atitikmenys: angl. forbidden band; forbidden energy band vok. verbotene Energiezone, f; verbotenes Energieband, n rus. запрещённая зона, f; запрещённая полоса энергии, f pranc. bande… …   Fizikos terminų žodynas

  • bande d'énergie dans un semi-conducteur — puslaidininkio energijos juosta statusas T sritis radioelektronika atitikmenys: angl. semiconductor energy band vok. Energieband in einem Halbleiter, n rus. энергетическая зона полупроводника, f pranc. bande d énergie dans un semi conducteur, f …   Radioelektronikos terminų žodynas

  • bande d’énergie occupée — užpildytoji energijos juosta statusas T sritis fizika atitikmenys: angl. filled band; full band vok. besetztes Energieband, n; gefülltes Energieband, n; vollbesetztes Energieband, n rus. заполненная энергетическая зона, f pranc. bande d’énergie… …   Fizikos terminų žodynas

  • bande d’énergie sphérique — sferinė energijos juosta statusas T sritis fizika atitikmenys: angl. spherical energy band vok. sphärisches Energieband, n rus. сферическая энергетическая зона, f pranc. bande d’énergie sphérique, f …   Fizikos terminų žodynas

  • structure de bande d’énergie — energijos juostos sandara statusas T sritis fizika atitikmenys: angl. energy band structure vok. Energiebandstruktur, f rus. структура энергетической зоны, f pranc. structure de bande d’énergie, f …   Fizikos terminų žodynas

  • élargissement de bande d’énergie — energijos juostų išplitimas statusas T sritis fizika atitikmenys: angl. energy band broadening vok. Energiebandverbreiterung, f rus. расширение энергетических зон, n pranc. élargissement de bande d’énergie, m …   Fizikos terminų žodynas

  • Bande De Conduction — Théorie des bandes Représentation schématique des bandes d énergie d un solide. En physique du solide, la théorie des bandes est une modélisation des valeurs d énergie que peuvent prendre les électrons d un solide à l intérieur de celui ci. De… …   Wikipédia en Français

  • Bande De Valence — Théorie des bandes Représentation schématique des bandes d énergie d un solide. En physique du solide, la théorie des bandes est une modélisation des valeurs d énergie que peuvent prendre les électrons d un solide à l intérieur de celui ci. De… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”