- Technique de multiplication dite russe
-
La technique de multiplication dite russe consiste à diviser par 2 le multiplicateur (et ensuite les quotients obtenus), jusqu'à un quotient nul, et à noter les restes ; et à multiplier parallèlement le multiplicande par 2. On additionne alors les multiples obtenus du multiplicande correspondant aux restes non nuls.
Cela revient en fait à écrire le multiplicateur en base 2 et à faire ensuite des multiplications par 2 et des additions. C'est donc une variante de la technique de la multiplication en Égypte antique, bien qu'elle ait pu être rédécouverte indépendamment.
Exemple
13 x 238 on écrit
13/2 = « quotient » 6 reste 1, 238, 238 6/2 = « quotient » 3 reste 0, (476 pour mémoire), 238 3/2 = « quotient » 1 reste 1, 952, 1190 1/2 = « quotient » 0 reste 1, 1904 (stop : le quotient est nul), 3094 13 x 238 = 3094 13 = 1101 en base 2 (obtenu en lisant les restes de bas en haut dans le tableau, et écrit selon la convention usuelle de droite -- unités -- à gauche -- puissances élevées -- )
Pour limiter le nombre d'opérations, il faut généralement choisir comme multiplicateur le plus petit des deux nombres à multiplier. Toutefois, si l'un d'eux est une puissance de 2, c'est plutôt lui qu'il faut préférer (il n'y a pas d'addition). Les restes deviennent forcément nuls, et donc le résultat devient stable, à partir du moment où le quotient est lui-même nul. Formellement, la condition d'arrêt (s'arrêter lorsque le quotient est nul) est donc seulement une commodité.
Algorithme graphique
Graphiquement, l'on peut dire qu'une multiplication transforme un rectangle multiplicateur x multiplicande en une ligne en conservant le nombre d'éléments.
L'algorithme graphique consiste pour la multiplication russe à :
- a) si le multiplicateur est pair, prendre la moitié inférieure du rectangle et la coller sur un côté (on transforme ainsi un rectangle 2n x p en un rectangle n x 2p) ;
b) si le multiplicateur est impair, enlever d'abord la dernière ligne et la mettre à part, ce qui ramène au cas précédent 1.a) ; - recommencer jusqu'à n'obtenir qu'une seule ligne ;
- additionner toutes les lignes mises à part.
Voir aussi
Catégories :- Multiplication
- Technique de calcul
- Culture russe
- a) si le multiplicateur est pair, prendre la moitié inférieure du rectangle et la coller sur un côté (on transforme ainsi un rectangle 2n x p en un rectangle n x 2p) ;
Wikimedia Foundation. 2010.