Needleman-Wunsch

Needleman-Wunsch

Algorithme de Needleman-Wunsch

L'algorithme de Needleman-Wunsch effectue un alignement global maximal de deux chaînes de caractères (appelées ici A et B). Il est couramment utilisé en bioinformatique pour aligner des séquences de protéines ou de nucléotides. L'algorithme a été présenté en 1970 par Saul Needleman et Christian Wunsch dans leur publication A general method applicable to the search for similarities in the amino acid sequence of two proteins, J Mol Biol. 48(3):443-53.

L'algorithme de Needleman-Wunsch est un exemple de programmation dynamique, tout comme l'algorithme de Levenshtein auquel il est apparenté. Il garantit de trouver l'alignement de score maximal. Ce fut la première application de la programmation dynamique pour la comparaison de séquences biologiques.

Les scores pour les caractères alignés sont spécifiés par une matrice de similarité. Ici, S(i,j) est la similarité des caractères i et j. Elle utilise une 'pénalité de trou', appelée ici d.

Par exemple, si la matrice de similarité était

- A G C T
A 10 -1 -3 -4
G -1 7 -5 -3
C -3 -5 9 0
T -4 -3 0 8

alors l'alignement:

  AGACTAGTTAC
  CGA---GACGT

avec une pénalité de trou de -5, aurait le score suivant :

  S(A,C) + S(G,G) + S(A,A) + 3\times d + S(G,G) + S(T,A) + S(T,C) + S(A,G) + S(C,T)
  = -3 + 7 + 10 - 3\times 5 + 7 + -4 + 0 + -1 + 0 = 1

Pour déterminer l'alignement de score maximal, un tableau bidimensionnel, ou matrice est utilisé. Cette matrice est parfois appelée matrice F, et ses éléments aux positions (i, j) sont notés Fij. Il y a une colonne pour chaque caractère de la séquence A, et une ligne pour chaque caractère de la séquence B. Donc, si on aligne des séquences de taille n et m, le temps d'exécution de l'algorithme est O(nm), et l'espace mémoire utilisé est O(nm). (Cependant, il existe une version modifiée de l'algorithme, qui utilise un espace mémoire en O(m + n), mais a un temps d'exécution plus long. Cette modification est en fait une technique générale en programmation dynamique ; elle fut introduite dans l'algorithme d'Hirschberg).

Au fur et à mesure de la progression de l'algorithme, Fij se verra assigner le score optimal pour l'alignement des i premiers caractères de A avec les j premiers caractères de B. Le principe d'optimalité est appliqué comme suit.

  Base:
  F0j = d * j
  Fi0 = d * i
  Recursion, basée sur le principe d'optimalité :
  Fij = max(Fi − 1,j − 1 + S(Ai,Bj),Fi,j − 1 + d,Fi − 1,j + d)

Le pseudo-code de calcul de la matrice F est donné ici :

  for i=0 to length(A)-1
    F(i, 0) ← d*i
  for j=0 to length(B)-1
    F(0,j) ← d*j
  for i=1 to length(A)
    for j = 1 to length(B)
    {
      Choice1 ← F(i-1,j-1) + S(A(i), B(j))
      Choice2 ← F(i-1, j) + d
      Choice3 ← F(i, j-1) + d
      F(i, j) ← max(Choice1, Choice2, Choice3)
    }

Une fois que la matrice F est calculée, on voit que l'élément (i, j) correspond au score maximum pour n'importe quel alignement. Pour déterminer quel alignement fournit ce score, il faut partir de cet élément (i, j), et effectuer le 'chemin inverse' vers l'élément (1,1), en regardant à chaque étape à partir de quel voisin on est partis. S'il s'agissait de l'élément diagonal, alors A(i) et B(i) sont alignés. S'il s'agissait de l'élément (i-1,j), alors A(i) est aligné avec un trou, et s'il s'agissait de l'élément (i, j-1), alors B(j) est aligné avec un trou.

  AlignmentA ← ""
  AlignmentB ← ""
  i ← length(A) - 1
  j ← length(B) - 1
  while (i > 0 AND j > 0)
  {
    Score ← F(i, j)
    ScoreDiag ← F(i - 1, j - 1)
    ScoreUp ← F(i, j - 1)
    ScoreLeft ← F(i - 1, j)
    if (Score == ScoreDiag + S(A(i), B(j)))
    {
      AlignmentA ← A(i) + AlignmentA
      AlignmentB ← B(j) + AlignmentB
      i ← i - 1
      j ← j - 1
    }
    else if (Score == ScoreLeft + d)
    {
      AlignmentA ← A(i) + AlignmentA
      AlignmentB ← "-" + AlignmentB
      i ← i - 1
    }
    otherwise (Score == ScoreUp + d)
    {
      AlignmentA ← "-" + AlignmentA
      AlignmentB ← B(j) + AlignmentB
      j ← j - 1
    }
  }
  while (i > 0)
  {
    AlignmentA ← A(i) + AlignmentA
    AlignmentB ← "-" + AlignmentB
    i ← i - 1
  }
  while (j > 0)
  {
    AlignmentA ← "-" + AlignmentA
    AlignmentB ← B(j) + AlignmentB
    j ← j - 1
  }

Liens externes

  • [1] Algorithme de Needleman-Wunsch en java.

Voir aussi

  • Portail de la biologie cellulaire et moléculaire Portail de la biologie cellulaire et moléculaire
Ce document provient de « Algorithme de Needleman-Wunsch ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Needleman-Wunsch de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • Needleman-Wunsch-Algorithmus — Der Needleman Wunsch Algorithmus ist ein Verfahren der Bioinformatik. Er wird für den Vergleich zweier Sequenzen (häufig zweier DNA oder Aminosäuresequenzen) genutzt. Hierfür ermittelt er das globale Alignment, d. h. eine Zuordnung der… …   Deutsch Wikipedia

  • Needleman–Wunsch algorithm — The Needleman–Wunsch algorithm performs a global alignment on two sequences (called A and B here). It is commonly used in bioinformatics to align protein or nucleotide sequences. The algorithm was published in 1970 by Saul B. Needleman and… …   Wikipedia

  • Needleman-Wunsch algorithm — The Needleman–Wunsch algorithm performs a global alignment on two sequences (called A and B here). It is commonly used in bioinformatics to align protein or nucleotide sequences. The algorithm was published in 1970 by Saul Needleman and Christian …   Wikipedia

  • Algorithme De Needleman-Wunsch — L algorithme de Needleman Wunsch effectue un alignement global maximal de deux chaînes de caractères (appelées ici A et B). Il est couramment utilisé en bioinformatique pour aligner des séquences de protéines ou de nucléotides. L algorithme a été …   Wikipédia en Français

  • Algorithme de needleman-wunsch — L algorithme de Needleman Wunsch effectue un alignement global maximal de deux chaînes de caractères (appelées ici A et B). Il est couramment utilisé en bioinformatique pour aligner des séquences de protéines ou de nucléotides. L algorithme a été …   Wikipédia en Français

  • Algorithme de Needleman-Wunsch — L algorithme de Needleman Wunsch effectue un alignement global maximal de deux chaînes de caractères (appelées ici A et B). Il est couramment utilisé en bio informatique pour aligner des séquences de protéines ou de nucléotides. L algorithme a… …   Wikipédia en Français

  • Algoritmo Needleman-Wunsch — El algoritmo de Needleman Wunsch sirve para realizar alineamientos globales de dos secuencias. Se suele utilizar en el ámbito de la bioinformática para alinear secuencias de proteínas o de ácidos nucleicos. Fue propuesto por primera vez en 1970,… …   Wikipedia Español

  • Saul Needleman — Saul B. Needleman is a bioinformaticist. Along with Christian Wunsch, in 1970 he published A general method applicable to the search for similarities in the amino acid sequence of two proteins , which introduced the Needleman Wunsch algorithm.… …   Wikipedia

  • Saul Needleman — Saul B. Needleman es un bioinformático. Junto con Christian Wunsch publicó en 1970 un método para realizar el alineamiento de secuencias de forma global. Este método pasó posteriormente a denominarse algoritmo de Needleman Wunsch. Este método fue …   Wikipedia Español

  • Christian Wunsch — Christian D. Wunsch is a bioinformaticist. Along with Saul Needleman, in 1970 he published A general method applicable to the search for similarities in the amino acid sequence of two proteins , which introduced the Needleman Wunsch algorithm.… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”